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Module-I

Elasticity: All structural materials possess to a certain extent the property
of elasticity i.e. if external forces, producing deformation of a structure,
don’t exceed a certain limit; the deformation disappears with the removal of
the forces. In this course it will be assumed that the bodies undergoing the
action of external forces are perfectly elastic, i.e. that they resume their
initial form completely after removal of forces.

The simplest mechanical test consists of placing a standardized specimen
with its ends in the grips of a tensile testing machine and then applying load
under controlled conditions. Uniaxial loading conditions are thus
approximately obtained. A force balance on a small element of the

specimen yields the longitudinal (true) stress as

F
=4

Where, F is the applied force and A is the (instantaneous) cross sectional
area of the specimen. Alternatively, if the initial cross sectional area Ao is

used, one obtains the engineering stress
F

4
For loading in the elastic regime, for most engineering materials o, = o

Oc

Stress: A body under the action of external forces, undergoes distortion
and the effect due to this system of forces is transmitted throughout the
body developing internal forces in it. To examine these internal forces at a
point O in Figure (a), inside the body, consider a plane MN passing through
the point O. If the plane is divided into a number of small areas, as in the
Figure (b), and the forces acting on each of these are measured, it will be
observed that these forces vary from one small area to the next. On the
small area DA at point O, a force DF will be acting as shown in the Figure
2.1 (b). From this the concept of stress as the internal force per unit area
can be understood. Assuming that the material is continuous, the term
"stress" at any point across a small area AA can be defined by the limiting
equation as below.
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Force acting on a Body

Stress = lim —
Ad—0 A4

where AF is the internal force on the area AA surrounding the given point.

Stress is sometimes referred to as force intensity.

Notation of Force and Stress: There are two kinds of external forces which
may act on bodies force distribution over the surface of the bodies
face of the body, such as the pressure of one body on another, or hydro-
static pressure, are called surface forces. Forces distributed over the
volume of a body, such as gravitational forces, magnetic forces, or in
the case of a body in motion, inertia forces, are called body forces. The
surface force per unit area we shall usually resolve into three compo-
nents parallel to the coordinate axes and use for these components the
notation X, ¥, Z. We shall also resolve the body force per unit volume
into three components and denote z

these components by X, Y, Z. Tz
We shall use the letter ¢ for de- =B -
noting normal stress and the letter e
r for shearing stress. To indicate I
the direction of the plane on which ] |
the stress is acting, subscripts to % | ':'iz_ *z_ oy
these letters are used. If wetakea Dby o | T y
very small cubic element at a point -~
0, Fig. 1, with sides parallel to the I

coordinate axes, the notations for t



the components of stress acting on the sides of this element and the directions

taken as positive are as indicated. For the sides of element perpendicular to the
y-axis, for instance, the normal components of stress acting on these
sides are denoted by ¢,. The subscript y indicates that the stress is
acting on a plane normal to the y-axis. The normal stress is taken
positive when it produces tension and negative when it produces
compression.

The shearing stress is resolved into two components parallel to the
coordinate axes. Two subscript letters are used in this case, the first
indicating the direction of the normal to the plane under consideration
and the second indicating the direction of the component of the stress.
For instance, if we again consider the sides perpendicular to the y-axis,
the component in the z-direction is denoted by r,. and that in the
2-direction by 74,. The positive directious of the components of shear-
Ing stress on any side of the cubic element are taken as the positive
directions of the coordinate axes if a tensile stress on the same side
Would have the positive direction of the corresponding axis. If the

tensile stress has a direction opposite to the positive axis, the positive
direction of the shearing-stress components should be reversed. Fol-
lowing this rule the positive directions of all th.e compc:nel.lts of. streﬁs
acting on the right side of the cubic element (Fig. 3? f:omc}de vrn.th the
positive directions of the coordinate axes. The po.sﬂ,we directions are
all reversed if we are considering the left Sid:l? of ‘t-li.lls ele?lfflt.

Components of Stress:To describe the stress acting on the six sides of a cubic

E Y = Tiadhdaidatadkd _ -

element three symbols, ¢z, oy, 02, are NECESSATY for normal stresses; and

six symbols, Tuy, Tyzy Tazy Tz Tuzy Touy for shearm_g

z stresses. By a simple consideration of the equi-

Ly, librium of the element the number of symbols
for shearing stresses can be reduced to th}'ee.

If we take the moments of the forces acting on

z||dz G the element about the x-axis, for instance, only
' ady the surface stresses shown in Fig. 4 ne-ed be con-
o ~ v Y sidered. Body forces, such as the weight of 1fhe
2 element, can be neglected in this instance, Whl?h

follows from the fact that in reducing one



dimensions of the element the body forces acting on it d1m1msh as
the cube of the linear dimensions while the surface forces diminish as
the square of the linear dimensions. Hence, for a very small elemem:f’[
body forces are small quantities of higher order than §ufface forces an
can be neglected in calculating the surface forces. Similarly, morr}ents
due to nonuniformity of distribution of normal forct?s are of h1.gh.er
order than those due to the shearing forces and vanish in the 11113113.
Also the forces on each side can be considered to be tht? area ‘of the side
times the stress at the middle. Then denoting the dlII.:l(—':‘nS}OIlS of th.e
small element in Fig. 4 by dz, dy, dz, the equation (?f ef;mhbnum of this
element, taking moments of forces about the z-axis, 18

rwdxdydz = Trzdxdydz

The two other equations can be obtained in the same manner. From
these equations we find

Tay = Tyzy Tzz = Taxzy Tey = Tus

Hence for two perpendicular sides of a cubic elements the components of

shearing stress perpendicular to the line of intersection of these sides
are equal.

The six quantities a,, oy, 0., T2y = Tyz, Tzz = Tar, Ty = 7.y are therefore
sufficient to describe the stresses acting on the coordinate planes

through a point; these will be called the componenis of stress at the
point.

Components of strain:

the deformation of an elastic body it will be -
assumed that there are enough constraints to dx
prevent the body from moving as a rigid o, Ly

body, so that no displacements of particles ..z

of the body are possible without a deformation of it.

In this book, only small deformations such as occur in engineering
structures will be considered. The small displacements of particles of
a deformed body will usually be resolved into components u, v, w
parallel to the coordinate axes z, y, 2, respectively. It will be assumed
that these components are very small quantities varying continuously
over the volume of the body. Consider a small element dx dy dz of an

elastic body. If the body undergoes a deformation and u,v,w



are the components of the displacement of the point O, the displace-
ment in the z-direction of an

0 -+ dx —'.':'IA

7 x adjacent point A on the z-axis
¢ O’==?}: - d”‘?- is ,
=TT u

L "*l |“ due to the increase (du/dx) dz
: \ of the function © with increase

B R of the coordinate x. The in-
...._.__{-_L:.:f' crease in length of the element

Y Carzidy OA due to deformation is there-

fore (5u/ éx) dz, Hence the
. unit elongation at point O in the
ﬁrztlon is 8u/dz. In the same manner it can be shown that the
1t elongations in the y- and z-directions are given by the derivati
9v/dy and dw/dz. ; Y ervases
Ojet us consitier now the distortion of the angle between the elements
Y and OB, F}g. 6: If u and v are the displacements of the point O in
e z- and ‘.y-dlrectxons, the displacement of the point A in the y-direc-

tion and of the point B in the z-direction are » + (dv/9z) dx and
u + (du/dy) dy, respectively. Due to these displacements the new
direction O’A’ of the element OA is inclined to the initial direction by
the small angle indicated in the figure, equal to dv/dz. In the same
manner the direction 0’B’ is inclined to OB by the small angle du/dy.
From this it will be seen that the initially right angle AOB between the
two elements OA and OB is diminished by the angle dv /ox + du/dy.
This is the shearing strain between the planes zz and yz. The shearing
strains between the planes zy and zz and the planes yz and yz can be
obtained in the same manner.

We shall use the letter e for unit elongation and the letter v for unit
shearing strain. To indicate the directions of strain we shall use the
same subseripts to these letters as for the stress components. Then

from the above discussion



du _ o e=§2
€ = T €y = b z az

ox
u _du | dw _ O, 0w
Yoo S5y T o YT & ax Yo T oz By

(2)

It will be shown later that, having the three unit elongations in three
perpendicular directions and three unit shear strains related t.o the
same directions, the elongation in any direction and the distortion of

the angle between any two can be calculated later on.
The six quantities €y, €,, €, ¥xy, ¥xz and y,,, are called the components of strain.

Generalized Hooke’s Law:

Linear elastic behavior in the tension test is well described by Hooke's law, namely
o=EFEe

where E is the modulus of elasticity or Young's modulus. For most materials, this is a

large number of the order of 10« Pa.

The statement that the component of stress at a given point inside a linear elastic
medium are linear homogeneous functions of the strain components at the point is
known as the generalized Hooke's law. Mathematically, this implies that

{TU = DJL_.I'L'J‘EH

where o'/ and e; are, respectively the stress and strain tensor components. The quantity
DY* is the tensor of elastic constants and it characterizes the elastic properties of the
medium. Since the stress tensor is symmetric, the elastic constants tensor consists of 36

components,
The elastic strain energy W is defined as the symmetric quadratic form
N | R
H = ECTIJ{"..I‘:{ = EI)U“EUEK'I

and has the property that o7 = dW/de;;. Because of the symmetry of W, the actual number
of elastic constants in the most general case is 21. This number is further reduced in special
cases that are of much interest in applications. For instance, for isotropic materials (elastic
properties the same in all directions) the number of elastic constants is 2. For orthotropic
materials (characterized by three mutually perpendicular planes of symmetry) the number
of constants is 9. If the material exhibits symmetry with respect to only one plane, the
number of constants is 13.



Stress-Strain relations for Isotropic-elastic solid:
The generalized Hooke's law for isotropic solids is

Ty — SI\L-EQQ
L I F
G-:'J' — EGEfj

where K and G are the elastic constants bulk modulus and shear modulus, respectively and
the primes denote the stress and strain deviators.

Combination of the above with the definition of stress and strain deviation tensors yields
the following commonly used forms of Hooke’s law; for stress, in terms of strain

J‘U = ;\Eaaéﬁ + QGE,'J'
and for strain, in terms of stress

1 42 v .
i — Tgi’j - _gandij
The constants A and & are called Lame’s constants, while £ is Young's modulus and v is
Poisson’s ratio. Any of the above elastic constants can be expressed in terms of the others
and only two are independent. Values of the above elastic constants for a wide variety of
engineering materials are readily available in handbooks.
For an isotropic elastic solid in a rectangular Cartesian system of coordinates, the con-
stitutive equations of behavior then become

1
G E[Jﬂ. — yfcrw S J::}]
1
Eyy = E’JIILI' E “(JII +J::}]
1
€zx = E[JJ: = F{ﬂrr -} Ty }]
1
E.‘Eg‘ = ﬁﬂ'xy-
1
v = 3G
ex
ZT 20 zr

this formula reduced to its simplest form as

- O =

[e2 — ”(o'u + o.)]

€z

loy — v(oz + 0'2)]

€y

€ — )z lo. — v(oz + o'y)]



Stress-Strain relations for Anisotropic-elastic solid:

It is conventional in studying elastic deformation of anisotropic materials to relabel the six
stress and strain components as follows:

011 =

Oga = 02

033 = d3

Ta3 = 04

13 — 05

T = O0g

€11 = &1

€22 — €3

€33 — €3
1

€23 = 364
1

€13 = 355
1

€12 = 356

With the new notation and using the summation convention, Hooke's law becomes
gy = 0ge;

or equivalently
& = 5505

where C; and S;; are, respectively the elastic stiffness and compliance matrices. Depending
on the symmetries existing in the material, only a few components of the above matrices
are nonzero. For instance, for single crystals with cubic structure only Cyy, Cyo and Cy
are nonzero. Values of the components of the above matrices for a variety of anisotropic
materials are readily available in handbooks.



Shearing STTALL ALU PLIOAL gy wvs

Let us consider the particular case of deformation of the rectangular
parallelopiped in which oy = —o: z
ando, = 0. Cutting out an element
abed by planes parallel to the z-axis Pyttt b

and at 45 deg. to the y- and z-axes 5l o, 1N
V K — o c
% __N\¢

(Fig. 7), it may be seen from Fig. 7b,
by summing up the forces along and

IEREER

perpendicular to be, that the normal -—
stress on the sides of this element is d -— 5)
gero and the shearing stress on the 73§ ] Y
sides 18 (a)
r = 3(o. — oy) = O {e) Fia. 7.

Such a condition of stress is ealled pure shear. The elongation of the
vertical element Ob is equal to the shortening of the horizontal elements
Oa and Oc, and neglecting a small quantity of the second order we con-
clude that the lengths b and be of the element do not change during
deformation. The angle between the sides ab and be changes, and the
corresponding magnitude of shearing strain v may be found from the
triangle Obe.  After deformation, we have

Oc _ T _YY_ 14+ ¢
Z)—I;_tan(‘* 2)_ 1+e
Qubstituting, from Egs. (3),

1
e,=E-(as—va,,) =g

and noting that for small ¥



ta.n%-—tan% 1—-'-"2;

2 T Y 24
l-ljtanztan—z- 1+2

we find

20 + v)o,  2(1 + ¥)r
v = Z =7 (4)

Thus the relation between shearing strain and shearing stress is defined
by the constants E and ». Often the notation

E
¢=51+» ®
is used. Then Eq. (4) becomes
. . é

The constant G, defined by (5), is called the modulus of elasticity in
shear or the modulus of rigidity.

If shearing stresses act on the sides of an element, as shown in Fig. 3,
the distortion of the angle between any two coordinate axes depends
only on shearing-stress components parallel to these axes and we
obtain

1 1 1
Yy = G Tay) Yuz = @"'wp Y2z = G T2z (6)

The elongations (3) and the distortions (6) are independent of each
other. Hence the general case of strain, produced by three normal and
three shearing components of stress, can be obtained by superposition:
on the three elongations given by Egs. (3) are superposed three shear-
ing strains given by Egs. (6).

Stress tensor:

Let O be the point in a body shown in Figure 2.1 (a). Passing through that
point, infinitely many planes may be drawn. As the resultant forces acting
on these planes is the same, the stresses on these planes are different
because the areas and the inclinations of these planes are different.
Therefore, for a complete description of stress, we have to specify not only
its magnitude, direction and sense but also the surface on which it acts. For
this reason, the stress is called a "Tensor".
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Stress components acting on parallelopiped
Figure above depicts three-orthogonal co-ordinate planes representing a
parallelopiped on which are nine components of stress. Of these three are
direct stresses and six are shear stresses. In tensor notation, these can be
expressed by the tensor tij, where i =x,y,zand j =X, Y, z.
In matrix notation, it is often written as

It is also written as



SPHERICAL AND DEVIATORIAL STRESS TENSORS

A general stress-tensor can be conveniently divided into two parts as
shown above. Let us now define a new stress term (om) as the mean
stress, so that
o, + Oy + o,
Om =
3

Imagine a hydrostatic type of stress having all the normal stresses equal to
om, and all the shear stresses are zero. We can divide the stress tensor
into two parts, one having only the "hydrostatic stress" and the other,
"deviatorial stress". The hydrostatic type of stress is given by

(., 0 0]
0 o, 0
0 0 o]

The deviatorial type of stress 1s given by

P ™
T, ~ Ty Ei 2
T+ o +
b 1 7, F )
r T —
I Y13 .y . E,'fm_

Here the hydrostatic type of stress is known as "spherical stress tensor"
and the other is known as the "deviatorial stress tensor".

It will be seen later that the deviatorial part produces changes in shape of
the body and finally causes failure. The spherical part is rather harmless,
produces only uniform volume changes without any change of shape, and
does not necessarily cause failure.



TYPES OF STRESS

Stresses may be classified in two ways, i.e., according to the type of body
on which they act, or the nature of the stress itself. Thus stresses could be
one-dimensional, two-dimensional or three-dimensional as shown in the
Figure (a), (b) and (c).

P

(a) One-dimensional Stress

| e
- —=— D
| L 1

P

P2
(b) Two-dimensional Stress (c) Three-dimensional Stress
Types of Stress

TWO-DIMENSIONAL STRESS AT A POINT

A two-dimensional state-of-stress exists when the stresses and body forces are
independent of one of the co-ordinates. Such a state is described by stresses oy, oy
and 1,y and the X and Y body forces (Here z is taken as the independent co-
ordinate axis).



We shall now determine the equations for transformation of the stress components
ox,oy and Ty, at any point of a body represented by infinitesimal element as shown
in the Figure

Thin body subjected to stresses in xy plane

Z

Stress components acting on faces of a small wedge cut from body of Figure shown
above.



Consider an infinitesimal wedge as shown in Fig. cut from the loaded body
in Figure above It is required to determine the stresses ox, and Txy, that
refer to axes to axis x and y making an angle 6 with axes X, Y as shown in
the Figure. Let side MN is normal to the x’ axis.
Considering ox, and Txy as positive and area of side MN as unity, the sides
MP and PN have areas cos6 and sin8, respectively.
Equilibrium of the forces in the x and y directions requires that
Tx = Ox C0SO+ Txy SINO
Ty= Txy C0SO + Ox Sin6
where Ty and T, are the components of stress resultant acting on MN m the x and ¥
directions respectively. The normal and shear stresses on the x plane (MN plane) are
obtained by projecting Ty and T, in the x" and y" directions.

G =TI, cos0+ T, sinf
T = T, c080-T, sinf

Substituting the stress resultant the above equations become
O .= G, C0s 0+ o, sin"# + 21, sinf cosd

T,= T, (€0s’8-sin’6)+(c,-cy) sinf cosd

x

__T A"

/
The stress o, 1s obtained by substituting | & 4 for @ 1n the expression for o .

-

By means of trigonometric identities

5 1 ,
cos = Tﬂ +cos2f), sinfl cost =

sin2 o,

b | =

e 1 i
sin = N (1-cos26)

The transformation equations for stresses are now written in the following form:

((Tx ta, )4 %(D‘I a, Jeos 26 + r,, sin2f

':*7.1} %[ln‘l_ r:rll_)ms-_"-*f::' T, sin2é

(crx o, }5111 260 + 7, cos2f

b | =



Principal stress in two dimensions:

To ascertain the orientation of x'y’ corresponding to maximum or mininmm o . the

dﬁx'

necessary condition =0

is applied to equation of yielding
-(0y-0;) sin26 + 21, cos26 =0

.,
=Ty

Therefore. tan 26 =
G. -0

X J
As 26 = tan (7 +26). two directions, mutually perpendicular, are found to satisfy equation
These are the principal directions along which the principal or maximum
and minimum normal stress act.

A principal plane is thus a plane on which the shear stress is zero. The
principal stresses are determined by the equation

=
| k=
G, 0,
i
L

2 0 o | 5
b e == iy

Algebraically, larger stress given above is the maximum prinecipal stress. denoted by o.

Jj31 =

The munimum principal stress is represented by o

Analysis of three dimensional stresses and strains

Consider a cube of infinitesimal dimensions shown in figure; all stresses acting on
this cube are identified on the diagram. The subscripts (1) are the shear stress,
associate the stress with a plane perpendicular to a given axis, the second designate
the direction of the stress, i.e.

T

Face Direction
The stress symbols in figure (1).
shows that three normal stresses: -

O™ Ty Oy = Ty 06 =

and six shearing stresses. Tyy , Txy ,

Tyx s Tyz » Tax > Ty Figure (1)



The force vector (P) has only three components Py . P, and P,.

Px
Py
P,
:':’Ll]d stress vector: -
Or Txy Txz Tox  Txy Txz
Tyx Oy Tyz = Tyx Tyy Tyz
Tzx Tzy O Tzx Tzy Tzz

This 1s a matrix representation of the stress tensor. It 1s a second —rank tensor
requiring two indices to identify its elements or components. A vector 1s first- rank

tensor. and scalar is a zero tensor.

Sometimes, for brevity, a stress tensor is written in identical natation as Tj; . where

1. ] and k designations X, v and z.

The stress tensor is symmetric. i.e. Ty= Tj; or

Ter— Tox 22

Strain-displacement relations:

When the strain components ¢,, €, and y,,, at a point are known, the unit
elongation or displacement for any direction and the decrease of a right
angle (the shearing strain) of the any orientationat the point can be found.
A line PQ as shown in figure below between the points (x,y) , (x+dx, y+dy)
is translated, stretched (contracted) and rotated into the line element P'Q’



when the deformation occurs. The di
. The dis
those of Q are placement component of P are u,v

3 d d
u+%%dw+§-;dy, v+é—%dx+—55dy
it o
y 2 dy
| a(x+dx,y+dy}
(@) Q' (6)

1t P'Q in Fig. 17a is now translated so that P’ is brought back to P,
it is in the position PQ" of Fig. 17b, and QR, RQ" represent the com-
ponents of the displacement of @ relative to P. Thus
u ou , OV 3
QRPEde_l_;ﬁdy’ RQ -—amdm—I-dyay (a)
The components of this relative displacement QS, SQ’’, normal to
PQ" and along PQ", can be found from these as

QS = —QR sin 6 + RQ'' cos 6, SQ" = QR cos § -+ RQ' sin 8 (b)

ignoring the small angle QPS in comparison with 0. Since the short
line QS may be identified with an are of a circle with center P, SQ"'

gives the stretch of PQ. The unit elongation of P'Q’, denoted by e, is
SQ"/PQ. Using (b) and (a) we have

_ du dz ou dy . o dz v dy
€0 = 008 ﬂ(ax ds + Y ds) +sin e(ax ds + Y ds)

_ou du , vy . W .
-axcos 0 + ay+ax)smﬂcose+aysm9
or

€@ = €& cos*ﬂ+'y,,sinocosﬂ+e,sin’e | (c)



which gives the unit elongation for any direction 0.

The angle ¥ through which PQ is rotated is @S /PQ. Thus from (b)
e ovd v dy
. oude , dudy dvde , W ___)
%:—smﬁ(ﬁ&g—l-ggag +cose(6$ds+6yds
or a |
d v ou\ . _ U oy d
¢a=£00820+(§§—-5§ sin 6§ cos 0 aysm ()]

The line element PT' at right angles to PQ makes an angle 6 + (w/2)
with the z-direction, and its rotation ¥+7 is therefore given by (d) when

g + (wr/2) is substituted for 6. Since cos [0 + (x/2)] = — sin 6,
sin [0 + (r/2)] = cos 6, we find
_0 g (2 ) T
Yo+l = 5, S0 6 (ay 35 ) S0 6 cos 6 3y cos® 8 (e)

The shear strain vy, for the directions PQ, PT is s — ¥4+3, 50

v | du 28 _ w2 d _ du . .
Yo = (6x + 3y (cos? § — sin® 6) + 3y 6.7;) 2 sin 8 cos 6
or

Lys = $vey (cos? 8 — sin? 6) + (¢, — €,;) sin 0 cos 6 (H

Comparing (¢) and (f) with (13), we observe that they may be obtained
from (13) by replacing o by es, 7 by v6/2, 02 bY €, 03 bY €y, T2y BY ¥2/2,
and « by 6. Consequently for each deduction made from (13) as to
o and 7, there is a corresponding deduction from (c) and (f) as to e and
ve/2. Thus there are two values of 6, differing by 90 deg., for which
ve is zero. They are given by

Y= — tan 20
Gz—‘éy

The corresponding strains e, are principal strains. A Mohr circle
diagram analogous to Fig. 13 or Fig. 16 may be drawn, the ordinates
representing vs/2 and the abscissas . The principal strains e, ez will
be the algebraically greatest and least values of €y as a function of 6.
The greatest value of v4/2 will be represented by the radius of the
circle. Thus the greatest shearing strain g w... is given by

Y@ max. — €1 — €2



Equilibrium equations

x

V@),
Consider the equilibrium of a small
rectangular block of edges h,k and T
unity as shown in the figure. ()3
The stresses acting on the faces () i @y e,
1,2,3,4 and their positive directions 2_ (Teyh
are indicated in the figure. On [ (7ay):
account of the deviation of stress (o

throughout the material, the value of, for instance, o, is not quite
the same for face 1 as for face 3. The symbols o, o, 7., refer to the
point z, y, the mid-point of the rectangle in Fig. 19. The values at the
mid-points of the faces are denoted by (¢.)1, (¢2)s, ete.  Since the faces
are very small, the corresponding forces are obtained by multiplying
these values by the areas of the faces on which they act.!

The body force on the block, which was neglected as a small guantity
of higher order in considering the equilibrium of the triangular prism
of Fig. 12, must be taken into consideration, because it is of the same
order of magnitude as the terms due to the variations of the stress
components which are now under consideration. If X, ¥ denote the

~components of body force per unit volume, the equation of equilibrium
for forces in the z-direction is

‘ (O':c-)lk - (0'3)3]5 + (Ta:y)ﬂh - (Ta:y)-ih + Xhk =0
or, dividing by Ak,

(0"1')1 - (U,).é
h

I_f now the block is taken smaller and smaller, i.e., h — 0, £k — 0, the
limit of [(62)1 — (02)s]/k is da./8x by the definition of such a derivative.

+ (T-ﬂ')ﬂ };‘ (T-‘W)4 + X = 0



Similarly [(ra)s — (ra)s)/k becomes dr.,/dy. The equation of equi-
librium for forces in the y-direction is obtained in the same manner.
Thus

9‘53+6L;”+X=0

| (18)
9oy 4 ey Ly _
o T ol tY =0 |

In practical applications the weight of the body is usually the only
body forece. Then, taking the y-axis downward and denoting by p the
mass per unit volume of the body, Egs. (18) become

do, 07y

Jdx ay (19)
Yy g -0
Y or TP T __

These are the differential equations of equilibrium for two-dimensional
problems. . 7 _ o '
Boundary Conditions: Equations (18) or (19) must be satisfied

at all points throughout the volume of the body. The stress compo-
nents vary over the volume of the plate, and when we arrive at the
‘boundary they must be such as to be in equilibrium with the external
forces on the boundary of the plate, so that external forces may be
regarded as a continuation of the internal stress distribution. These
conditions of equilibrium at the boundary can be obtained from Eqgs.
(12). Taking the small triangular prism OBC (Fig. 12), so that the
side BC coincides with the boundary of the plate, as shown in Fig. 20,

and denoting by X and Y the components of the surface forces per unit
area at this point of the boundary, we have

X:- = lo’z + m’rgy ) (20)
Y = moy + lry
in which ! and m are the direction cosines of the normal N to the

boundary. - N
In the particular case of a rectangular plate the coordinate axes are

usually taken parallel to the sides of the plate and the boundary condi-
tions (20) can be simplified. Taking, for instance, a side of the plate



parallel to the z-axis we have for this part of the boundary the normal
N parallel to the y-axis; hence I = 0 and
= +1. Equations (20) then become x

X = ir;y, }-’= __'_-O'y

Here the positive sign should be taken if the
normal N has the positive direction of the y N
y-axis and the negative sign for the opposite
direction of N. It is seen from this that at
the boundary the stress components become equal to the components
of the surface forces per unit area of the boundary.

M

N

Fic. 20.

Compatibility conditions: The problem of the theory of elas-
ticity usually is to determine the state of stress in a body submitted to
the action of given forces. In the case of a two-dimensional problem
it is necessary to solve the differential equations of equilibrium (18),
and the solution must be such as to satisfy the boundary conditions
(20). These equations, derived by application of the equations of
statics for absolutely rigid bodies, and containing three stress compo-
nents o, ¢y, Tz, are not sufficient for the determination of these compo-
nents. The problem is a statically indeterminate one, and in order to
obtain the solution the elastic deformation of the body must also be
considered.

The mathematical formulation of the condition for compatibility of
stress distribution with the existence of continuous functions u, v, w
defining the deformation will be obtained from Eqs. (2). In the 'c‘ase
of two-dimensional problems only three strain components need be
considered, namely,

=G =g Tw=g o (@)
These three strain components are expressed by two functions u and v;
hence they cannot be taken arbitrarily,-and there exists a certain rela-

tion between the strain components which can easily be obtained from
(a). Differentiating the first of the Eqgs. (a) twice with respect to v,
the second twice with respect to z, and the third once with respect to =
and once with respect to y, we find



A%, 4 d%e, =i6"y,,-,
dy* ' 8x* Idrady

(21)

This differential relation, called the condition of compatibility, must be
satisfied by the strain components to secure the existence of functions
u and v connected with the strain components by Egs. (a). By using
Hooke’s law, [Eqs. (3)], the condition (21) can be transformed into a
relation between the components of stress.

In the case of plane stress distribution (Art. 7), Eqgs. (3) reduce to

€z = ;(Ua — vay), &y = % (o0y — voz) (22)
1 271 o
Yzy = G~ _(_;'—v_) Tzy (23)

Substituting in Eq. (21), we find

9% a%r
ayg (62 — voy) + Eye (O'u — voz) = 2(1 + ») az 5-3

(b)

This equation can be written in a different form by using the equations
of equilibrium. For the case when the weight of the body is the only
body force, differentiating the first of Eqs. (19) with respect to z and
the second with respect to y and adding them, we find

ey 9%, d%y

3z 9y x: 9yt

Substituting in Eq. (b), the compatibility equation in terms of stress
components becomes

(a%+-"’i,,)(a=+ay)=o | @

Proceedmg in the same manner with the genera.l equa,tlons of equlhb—
rium (18) we find - -

o . & v\ o
(axg )(a,+a,) - —(1+v)( 6y) (25)

In the case of plane strain (Art. 8), we have

o = v(oz + oy)



and from Hooke’s law (Egs. 3), we find

1 2
& =% [ ~ D)o — »(1 + »)ay]

5 (26)
€ = E [(1 - ”2)0'3 - "’(_1 + "_)O's]
Yoy = &g‘_ﬂ Tzy (27)

Substituting in Eq. (21), and using, as before, the equations of equilib-
rium (19), we find that the compatibility equation (24) holds also for
plane strain. For the general case of body forces we obtain from Eqs.
(21) and (18) the compatibility equation in the following form:
2 2
(3_‘13"'%1’)("’"'”“”):_11»(?5'}':5 (28)
The equations of equilibrium (18) or (19) together with the boundary
conditions (20) and one of the above compatibility equations give us a
system of equations which is usually sufficient for the complete deter-
mination of the stress distribution in a two-dimensional problem.!
The particular cases in which certain additional considerations are
necessary will be discussed later (page 117). It is interesting to note
that in the case of constant body forces the equations determining
stress distribution do not contain the elastic constants of the material.
Hence the stress distribution is the same for all isotropic materials, pro-
vided the equations are sufficient for the complete determination of the
stresses. The conclusion is of practical importance: we shall see later
that in the case of transparent materials, such as glass or xylonite, it is
possible to determine stresses by an optical method using polarized
light (page 131). From the above discussion it is evident that experi-
mental results obtained with a transparent material in most cases can
be applied immediately to any other material, such as steel.
It should be noted also that in the case of constant body forces the
compatibility equation (24) holds both for the case of plane stress and
for the case of plane strain. Hence the stress distribution is the same

in these two cases, provided the shape of the boundary and the external
forces are the same.?




Airy’s stress function: It has been shown that a solution of two
dimensional problems reduces to the integration of the differential
equations of equilibrium together with the compatibility equation and the
boundary conditions. If we begin with the case when the weight of the body
Is the only body force, the equations to be satisfied are

do, Ty
Ty 0
60'v+ gfiy_l_ =0 @
(aﬁ e ) (0:+0s) =0 (%)

To these equations the boundary conditions (20) should be added. Thus
usual method of solving these equations is by introducing a new function,
called stress function. This function was introduced in the solution of two
dimensional problems by G. B. Airy so it is also called as Airy stress
function.

As is easily checked, the equations (a) are satisfied by taking any function ¢
of x and y and putting the following expressions for the stress components.
8¢ _ d%¢ 92

gz = E? pgy} 0-10' = 'a—x—i - pgy’ TW - - ax ay

In this manner we can get a variety of solutions of the equations of
equilibrium (a). The true solution of the problem is that which satisfies also
the compatibility equation (b). Substituting the above expressions for the
stress components into equation (b), we find that the stress function ¢ must
satisfy the equation

d'¢ _0'¢ | 3¢

ort +2 32 91 oy? + 3. 6‘_1}* =0
Thus the solution of a two-dimensional problem, when the weight of the

body is the only body force, reduces to finding a solution of above equation,
which satisfies the boundary conditions of the problem.

Let us now consider a more general case of body forces and assume
that these forces have a potential. Then the components X and Y in
Equation 18 are given by equations

14
;E ©
%

X::

Y:u-..



in which V is the potential function. FEquations (18) become

a.z V)+ 0

=0

e (0' v
These equations are of the same form as Eqgs. (a) and ean be satisfied by taking

Ni¢ _ 2

atr TV T T gz ay

o=V =22 o V=

In which ¢ is the stress function. Substituting above expressions in the
compatibility equation for plane stress distribution we find

o 9 |, 9 _ a“V
ozt +2 3z? oyt + - T VT ) (ax*

When the body force is simply the weight the potential V is —pgh. In this
case the right hand side of above equation reduced to zero. By taking the
solution ¢=0 the stree distribution can found out as

gz = —pgy, oy = —pgy, Tzy = 0

As a possible state of stress due to gravity. This is a state of hydrostatic
pressure pgh in two dimensions, with zero stress at Y=0. It can exist in a
plate or cylinder of any shape provided the corresponding boundary force
are applied.



Module-II

Plane stress: If a thin plate is loaded by forces applied at the boundary,
parallel to the plane of the plate and distributed uniformly over the
thickness, the stress components o, ,7,,,T,, are zero on both faces of the
plate and it may be assumed tentatively, that they are zero also within the
plate. The state of stress is then specified by o, , 0,7, only and is called
Plane stress.

1}

Yy . ¥

It may be assumed that these three components are independent of z i.e.
they don’t vary through thickness. They are functions of x and y only.

Plane strain: A similar simplification is possible at the other extreme
when the dimension of the body is in_the z-direction is very large.

If a long cylindrical or prismatieal body is loaded by forces which are
perpendicular to the longitudinal elements and do not vary along the
length, it may be assumed that all cross sections are in the same condi-
tion. It is simplest to suppose at first that the end sections are con-
fined between fixed smooth rigid planes, so that displacement in the
axial direction is prevented. The effect of removing these will be
examined later. Since there is no axial displacement at the ends, and,
by symmetry, at the mid-section, it may be assumed that the same
holds at every cross section.

There are many important problems of this kind—a retaining wall
with lateral pressure (Fig. 9), a culvert or tunnel (Fig. 10), a cylindrical
tube with internal pressure, a cylindrical roller compressed by forces in

a diametral plane as in a roller bearing (Fig. 11). IFl each case of
course the loading must not vary along the length. S.mce condltm:ns
are the same at all cross sections, it is sufficient to consider only a shcg

1



between two sections unit distance apart. The components u and » of
the displacement are functions of = and y but are independent of the

Fiea. 9.

bbb il {

FFIT it 1

Y Y
F1a. 11.

longitudinal coordinate z. Since the longitudinal displacement w is
zero, Eqgs. (2) give |

av ow
e =t oy T
ou , ow |
Tu =g T = ° (@)
ow
€; = E = 0

The longitudinal normal stress o, can be found in terms of o, and oy
by means of Hooke's law, Eqgs. (3). Since ¢; = 0 we find

o, — oz + oy) =0
or

g, = v(oz + 04) (b)



These normal stresses act over the cross sections, including th(.a ends,
where they represent forces required to maintain the plane strain, and
provided by the fixed smooth rigid planes. -

By Eqs. (a) and (6), the stress components 7., and r,. are zero, and,
by Eq. (b), 0. can be found from ¢, and ¢,. Thus the plane strain prob-
lem, like the plane stress problem, reduces to the determination of
oz, 0y, and 7., as functions of z and y only.

Simple problems in cartesian and polar co-ordinates

Solution by polynomials: it has been shown that the solution
of two-dimensional problems, when body forces are absent or are con-

stant, is reduced to the integration of the differential equation

di¢ d*¢

ax* +2 ax? ay?

4

+55=0 (a)
having regard to boundary conditions (20). In the case of long
rectangular strips, solutions of Eq. (a) in the form of polynomials are
of interest. By taking polynomials
of various degrees, and suitably ad- @2 ne c2
justing their coefficients, a number of L 2 O /
practically important problems can be
solved.!

Beginning with a polynomial of the

second degree RN

¢z = %2 x? + bazy + 0—22 y: () Fie. 21.

!
1"—1"— PN

g
Y v

which evidently satisfies Eq. (@), we find from Eqs. (29), putting
pg = 0, |
2 2 62
U,:%:cz’ gyz.?-——(g-g:az’ sz=—""""2£=—bg
All three stress components are constant throughout the body, .e., the
stress function (b) represents a combination of uniform tensions or



Let us consider now a stress function in the form of a polynomial of
the third degree:

3. gy ()

This also satisfies Eq. (a). Using Egs. (29) and putting pg = 0, we
find

62
- as-—-s%—csx-l-day
e |
gy = afs = asx + b3y
_ s _ _
Ta = 7 3 dy baz — cay

For a rectangular plate, taken as in Fig. 22, assuming all coefficients
except ds equal to zero, we obtain pure bending. If only coefficient a;
is different from zero, we obtain pure bending by normal stresses
applied to the sidesy = +c¢ of the plate. If coeflicient b; or c; is taken

l’*l 1—vl l—l—* r-bac
l » g- t"“'bg!
— ¥ wm } —=x
— Cj L x (;‘ 1~
A = T T T e
-t i —f - !
4 " 4
Fia. 22. 6. 23.

different from zero, we obtain not only normal but also shearing
stresses acting on the sides of the plate. Figure 23 represents, for
instance, the case in which all coefficients, except b; in function (c), are
equal to zero. The directions of stresses indicated are for bs positive.
Along the sides y = +¢ we have uniformly distributed tensile and
compressive stresses, respectively, and shearing stresses proportional
tox. Onthesidexr = ! wehave only the constant shearing stress —bsl,
and there are no stresses acting on the sidexz = 0. An analogous stress
distribution is obtained if coefficient ¢; is taken different from zero.



distribution is obtained if coefficient c; is taken different from zero.

In taking the stress function in the form of polynomials of the second
and third degrees we are completely free in choosing the magnitudes of
the coefficients, since Eq. (a) is satisfied whatever values they may
have. In the case of polynomials of higher degrees Eq. (a) is satisfied
only if certain relations between the coefficients are satisfied. Taking,
for instanee, the stress function in the form of a polynomial of the
fourth degree,

b= oo+ gzt + Syt +

N C)

3

and substituting it into Eq. (a), we find that the equation is satisfied
only if

€4 = —(264 -+ 34)
The stress components in this case are
62
0: = a;? = ¢ + dury — (2¢4 + aq)y?
62
oy = 61?24 = a4x? + baxy + cqy®
_ 0%y be ,
T ey~ 2% T Xey T3 v
Coefficients a4, . . . , ds in these expressions are arbitrary, and by

suitably adjusting them we obtain various conditions of loading of a
rectangular plate. For instance, taking all coefficients except ds equal
to zero, we find

oz =dsxy, o,=0, T1H=—FY (&)

Assuming d4 positive, the forces acting on the rectangular plate shown
in Fig. 24 and producing the stresses (e¢) are as given. On the longi-
tudinal sides y = ¢ are uniformly distributed shearing forces; on the
ends shearing forces are distributed according to a parabolic law. The



shearing forces acting on the boundary

of the plate reduce to the couple! { % ﬁ_—
¢ x
dac?l 1d ! e
M= 0 — 2 901 = 2 et i__‘_qh‘_***_f;
This couple balances the couple pro- [° ¢ "
duced by the normal forces along the ¥
side x = [ of the plate. Fie. 24.

Let us consider a stress function in the form of a polynomial of the
fifth degree.

Substituting in Eq. (a) we find that this equation is satisfied if

€ = —'(205 + 3&5)
-~ Jo = —3(bs + 2ds)

The corresponding stress components are:

oe = ‘Z;"" = %4t 4 daty — (2es + 3azyt — 2 (b + 2y
_ 0%¢s — 3
oy = 5y = asd’ +bz.xy+cs:vy+3y
= — %¢s _ - = 3 2., _ 2 1 3
= T gray T 3 baa: csxly — dsxy? + 3 (2¢5 + 3as)y
Again coefficients as, . . . , ds are arbitrary, and in adjusting them
we obtain solutions for various loading conditions of a plate. Taking,
HERREN! — e e e oy
¥ — ) |
e - ‘f -
i —x i X
i —_ i — $
l 1 I l 1 l l ,:d,s(l?c—:%c"") 7 >
[ degs !
y (a) (6)
Fia. 25.

for instance, all coefficients, except ds, equal to zero we find

o = ds(zty — 3Y°)



oy = ¥dsy° )]
—~dszy?

I

Tay

The normal forces are uniformly distributed along the longitudinal
sides of the plate (Fig. 25a). Along the side 2 = [, the normal forces
consist of two parts, one following a linear law and the other following
the law of a cubic parabola. The shearing forces are proportional to z
on the longitudinal sides of the plate and follow a parabolic law along
the side z = . The distribution of these stresses is shown in Fig. 25b.

Since Eq. (a) is a linear differential equation, it may be concluded
that a sum of several solutions of this equation is also a solution. We
can superpose the elementary solutions considered in this article and
in this manner arrive at new solutions of practical interest. Several
examples of the application of this method of superposition will be
considered.

ST. VENANT’S PRINCIPLE

For the purpose of analysing the statics or dynamics of a body, one force
system may be replaced by an equivalent force system whose force and
moment resultants are identical. Such force resultants, while equivalent
need not cause an identical distribution of strain, owing to difference in the
arrangement of forces. St. Venant's principle permits the use of an
equivalent loading for the calculation of stress and strain.

St. Venant’s principle states that if a certain system of forces acting on a
portion of the surface of a body is replaced by a different system of forces
acting on the same portion of the body, then the effects of the two different
systems at locations sufficiently far distant from the region of application of
forces, are essentially the same, provided that the two systems of forces
are statically equivalent (i.e., the same resultant force and the same
resultant moment). St. Venant principle is very convenient and useful in
obtaining solutions to many engineering problems in elasticity. The
principle helps to the great extent in prescribing the boundary conditions
very precisely when it is very difficult to do so.



Determination of Displacement: when the components of

stress are found from the previous equations, the components of strain
can be obtained by using Hooke’s law, Eqs. (3) and (6). Then the
displacements % and v can be obtained from the equations

ou dv ou ov
W ey W '554-:9;—7:» (a)

The integration of these equations in each particular case does not
present any difficulty, and we shall have several examples of their
application. It may be seen at once that the strain components (a)
remain unchanged if we add to « and v the linear funetions

u = a + by, v, =c — bx (b)

in which ¢, b, and ¢ are constants. This means that the displacements
are not entirely determined by the stresses and strains. On the dis-
placements due to the internal strains a displacement like that of a
rigid body can be superposed. The constants a and ¢ in Egs. (b) repre-
sent  translatory motion of the body and the constant b is a small
angle of rotation of the rigid body about the z-axis.

It has been shown (see page 25) that in the ease of constant body
forces the stress distribution is the same for plane stress distribution or
plane strain. The displacements however are different for these two
problems, since in the case of plane stress distribution the components
of strain, entering into Eqgs. (a), are given by equations

1 1
€ = B (U:c - Vﬂ'u); € = E (ay - va',,), Yoy = @Tw
and in the case of plane strain the strain components are:
1
€ = —,; [0'2: - V(Uu + Uz)] = E‘[(l - Pg)o-x - V(l + V)O'y]

1
E
1 1 X
& = 5 loy — »(oz + o)} = & (X —» Yoy — v(1 + »)o]
1
G



It is easily verified that these equations can be obtained from the pre-
ceding set for plane stress by replacing E in the latter by E/(1 — »?),
and vby »/(1 — v). These substitutionsleave G, which is £/2(1 + v),
unchanged.

Two Dimensional Problems in Polar Coordinate System

In any elasticity problem the proper choice of the co-ordinate system is
extremely important since this choice establishes the complexity of the
mathematical expressions employed to satisfy the field equations and the
boundary conditions. In order to solve two dimensional elasticity problems
by employing a polar co-ordinate reference frame, the equations of
equilibrium, the definition of Airy’s Stress function, and one of the stress
equations of compatibility must be established in terms of Polar Co-

ordinates.
STRAIN-DISPLACEMENT RELATIONS
Case 1: For Two Dimensional State of Stress

T—

O

Deformed element in two dimensions
Consider the deformation of the infinitesimal element ABCD, denoting r and
g displacements by u and v respectively. The general deformation
experienced by an element may be regarded as composed of (1) a change
in the length of the sides, and (2) rotation of the sides as shown in the
figure above.



Referring to the figure, it is observed that a displacement "u" of side AB
results in both radial and tangential strain.

A
Thersfors. Radial strain = & = —

T
and fanzential strain due to displacement u per anit length of 48 is

l:ﬂ_{r+uj|r:.'ﬁ|—rﬂ‘|'i' _
= =

rdd r
Tangential smain due to dispiacement v is given by
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Hanca, the resaltant staio is

Ea= (Eabu + (€

Similarly, the sheaning strains can be calculated due to displacements © and v as below.

Componsnt of shearing sirain due o o 1s

!
—
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Component of shearing sirain due o v is
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Thersfore, the total chear sirain is given by
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Case 2: For three dimensional stress state

-

Figure 6.1 Deformed element in three dimenzson:
Thestnm-displacememre}monsfonhemost 2=neral state of stress are given by




Compatibility Equation:
We have from strain displacement relation

Badial smam. £, =L (6.92)
i
Ttk a5 = A | +f 2] (6.95)
*Arlag \r] '
v (v). (1
and total sheannge smain, _L_!lf+l_._ 5 o
Ll vr) Lrlag e
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Stress-Strain Relations:

In terms of cylindrical coordinates, the stress-stain relations for 3-dimensiona] state of stress

and stramn are given by

5= %{nr -vi{g, +a, )]
1
£y= E{r]'ﬂ -we, +o )]

x,=%[n= _via, + 0]

For two-dimensional state of streszes and strains, the abeve eguations reducs to.

For Plame Stress Case
&= (o, —vo)
= ! {7y —vax, )
_E' ]
i E‘ e
For Plame Strain Case
+ W
= “E bia-vie, - yo,]
=¥
&= e, —yo,]
E
1
= —1T 5

G

(6.10)

[@.11)

(6.12)



Airy’s Stress function:
With reference to the two-dimensional squatons of soess mansformarion [Equatiens {2.13a)
to (2.13c)], the relationship between the polar siress components o, o and ¢, and the
Careésian sizess componsnts ¢, ¢ and ¢ can be obiained as balow.
e, =¥, cos’ #+a, 50’ A+, sin2@
i, = ¢r,C08" 0+, 5in” # -1 5in 24 (6.13)
=l —o Jsinfcosf+r_cosld

Iow we have,
=3 24 2
2% . =28 . . (6.14)
7, i’ Fi 5 g
Substitutmg (§.14) m (.13}, we zet
32, i 7
g, = . J‘i{m &+ lil51|1 8 ——L zin2g
o i crdy
.ﬁ: | _
Ty =— A+ —ﬂ 0+ 'ﬁ 24 (5.15)
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ax* dhechy

The polar compenents of sess in =rms of Alry's siess fimctions are as follows.

(1iag (1 ]ﬂ’qﬁ
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The above relations can be emnploved to determine the smess feld az a foncfon of Fand & .



AXISYMMETRIC PROBLEMS

Many engineering problems involve solids of revolution subjected to axially
symmetric loading. The examples are a circular cylinder loaded by uniform
internal or external pressure or other axially symmetric loading, and a semi-
infinite half space loaded by a circular area, for example a circular footing
on a soil mass. It is convenient to express these problems in terms of the
cylindrical co-ordinates. Because of symmetry, the stress components are
independent of the angular (q) co-ordinate; hence, all derivatives with
respect to g vanish and the components v, y,.9, Yg,, Tro and Ty, are zero.
The non-zero stress components area,, gy,, 0, and T,.

The strain-displacement relations for the nen-zero strains become

o N oW
B= — By =— 8, =—
7 L N -
du ow
Y= T
oz oT

and the conshifutive relation 13 given by

{1-v) ¥ v 0 -
H.‘ | EI |
o | - -v) v 0 .|
a, | 1+v)1-2v) =v) 8 7 |
] _-:| " .
r | Symmetry I:l—_:'l} ¥,



fa) Cylinder under axisymmeiric leading

(&) Ceirenlar Foonng on Soil mass

Axisymmetric problems

Thick walled cylinder subjected to internal and external pressure:
Consider a cylinder of inner radius ‘a’ and outer radius ‘b’ as shown in figure below.
Let the cylinder be subjected to internal presswre P, and an extermal pressure pP,.

This problem can be treated either as a plane stress case (o, = 0) or as a plane strain



Case (a) Plane Stress

(a)

Figure 6.5 (a) Thick-walled cvlinder (b) Plane stres: casze (¢) Plane strain caze

Consider the ends of the cylinder which are free to expand. Let o, = (. Owing to uniform
radial deformation. 1. = 0. Neglecting the body forces, equation of equilibrium reduces to

Here 0, and &, denote the tangential and radial stresses acting normal to the sides of the
element.

Since 7 is the only independent variable, the above equation can be wriften as
do, +[ﬂ',—ﬂ'HJ=G
ar \r

%{rﬂ-r}_ﬂﬂ = ﬂ

From Hooke's Law.

1 1
=50V &= {e-va)

Thﬁefmﬁa;=;ﬂandﬂg=ﬂurttfminmmsnfmaﬁmam
r

7
E

&= (l—u:}{ﬁ’ +vE,)

Gg= m{ﬁg +1-"Er}

Substituting the valves of & and £y in the above expressions. we get

E (du :u')
g, = —| —+V—
1—v" |\ dr r

_E [:.- du)
Tp= —| —+ Vv —
v



Substituting these in the equilibrium Equation (6.21)

— — ____._.-_={]
dr dr r dr
o Ll u

ar’ rdr

The above equation 15 called equidimensional equation in radial displacement The solution
of the above equation is

w=0Cr+ G

where (; and O, are constants.

The radial and tangential stresses are written in terms of constants of integration C; and C;.
Therefore,

.= a —Er:] [C5{1+ r':I—Cg[ 1_1P }J

.
EP=L‘|:C]{1+1'}+C'1[1;1P]\|
a-v9 7 )
The constants are determined from the boundary conditions.
when r=a, O —— 1.
r=5 o, = — Dy

E
(1-v")

E | 1-v]o
and {l_r:}[ﬂll:ln':l—fz[?”— — P
where the negative sign in the boundary conditions denotes compressive stress.
The constants are evalnated by substitution of equation (6.23a) mto {6.23)

i %

C,= I|I/1—1.J 'tn*pr ~Bp,

Hence,

[C, T ”= =,

2
a

\E )N (' -a") |
ﬁ=f1+*’]'ﬂlﬁzip.—pu}]

Substituting the values from earlier equations

7= ﬂ];ﬂr _bl.pl} _ 5 {.Pr _F'])H:bz
F b:—{]': {b: _ﬂl}rl




a’p,—b'p, | —pla’h? |
o | L2 [{pr Ps)

=

L b -a ) (b —a’y* |
”=r.]_—]_.-'-l{a—’-p-l_blpc}r*’rl+r1|{_pJ_Pajﬂllﬁl
\E ) #*-a") \| E | & -a)

These expressions wete first derived by G. Lambe.

It is interesting to cbserve that the sum (&, + ow) 15 constant through the thickness of the wall
of the cylinder, regardless of radial position. Hence according to Hooke's law, the
stresses o and o produce a umiform extension or contraction in Z-direction
The cross-sections perpendicular to the axis of the cylnder remam plane. If two adjacent
cross-sections are considered, then the deformation undergone by the element does not

mterfere with the deformation of the neighbounng element. Hence, the elements are
considered to be i the plane stress state.

Special Cases

(1) A cylinder subjected to internal pressure only: In this case, py, =0 and p, =p.
Then Equations (6.24) and (6.25) become

=L[1_b"
-\ )
4 T
ﬂf%[“b—:
{'5 —a ]x r J

Figure below shows the variation of radial and circumferential stresses across the
thickness of cylinder subjected to internal pressure

)
j

Cylinder subjected to internal pressure
The circumferential stress is greater at the inner surface of the cylinder and is given by

(Tl = .""g’—m
—



(i) .4 qylinder subjected to external pressure only: In this case, p, =0and p, =p.
Equation (6.25) becomes

Cylinder subjected to external pressure
However, if there is no inner hole, ie., if @ =0, the stresses are vniformly distributed in the
cylinder as

g, = 0= P

Case (b): Plane Strain

If a long cylinder is considered. sections that are far from the ends are in a state of plane
strain and hence & does not vary along the Z-axis,

Now, from Hoole's Law,

I

£ [o, —vio, +0.)]

Es ["7-.-4 - "{U.- +0, J'I]

5= [cr_, —vile, +o, ,'I]

Since & =10, then
0= é[r:r_, —vle, +o, }]



& = v{og oy

Hence.

o= C ), o,

e
ol E l{-]' kr{r r]

Solving for oy and o,
Fis

Ty = ve +ll-vie

i -I:l—ji.'}il'l'i-’}[ F { }E‘ﬂ]
_ E
a, =

(1-2v)(1+v)
Substituting the values of £ and £, the above expressions for o, and o, can be written as

[(1—v)e, +ve, ]

_ E [ du u
0= v—+(l-v)—
(1-2v){1+v)| dr r

o, = ) [1—1'}£+E}
(1-2v)l+v)| dar r

Substituting these in the equation of equibibrioum (6.21). we get
d'l_ du du u

—Ill-vir—4+wi |—v——(1—v)—=0

::IT-Iir ﬂrdm- m} "l ( F}r'

du d*u u
N il o il MY
dr drs r

The solution of this equation 15 the same as in Equation (6.22)

N = Cl.'l" - l':: i
where C'; and C; are constants of imtegration. Therefore, o, and o, are given by

" E e
Ty = [1—31'}{1+|'}|:C1 +{1-2 }ri ]




E C«
T }[ g 1

Applying the boundary conditions.
g, =—p, whenr=a
o, =— p, whenr =5

Therefore, B C, —(1-2v }Ef =—p,
(1-2v)l+v) ]
L[q—u—zr, Ef]=—p¢
{(1-2vX1+v)| b*
Solving. we get
~ )1+ v)( pp’ - pa’ ‘
E y ' =P
233
ad €= 11+1j[{pﬂjp,}r3 b ]
E a -b )

!

Substituting these, the stress components become

" :rF,”:—Fglﬁ'J '-_.- p;_pl:\.ﬂlb:
I L bl_a‘! J [5:—HEJ ."1
_(2a-pd") (2~ pu |a’®’
’ \ B —a’ ) Lirr 7
o, = v p.a —pb’ |
= ba‘_d.'

It is observed that the values of g, and g, are identical to those in plane stress case. But
in plane stress case, g, =0, where as in plane strain case g, has a constant value given
by above equation.

Rotating Discs of Uniform thickness:
The equation of equilibrium given by

(=) +F =0 @)

T

Is used to treat the case of a rotating disk, provided that the centrifugal
"Inertia force" is included as a body force. It is assumed that the stresses



induced by rotation are distributed symmetrically about the axis of rotation
and also independent of disk thickness.Thus, application of equation (a),
with the body force per unit volume F: equated to the centrifugal force
pw?r, yields

do. 0, — O,

arr+( . " 19)+pw2r=0

Where p is the mass density and w is the constant angular speed of the

disk in rad/sec. the above equation can be written as

d e
—ra J—a, + et =0 A.38)
ﬂ,rt o, )=, + (
Bhit the sirain components are grven by
du u
= F and fa= : (ﬁ; -II_,I
From Hooke's Law, with ce. =0
1 :
E = E[cr, — v, ) (6.38)
1 =
Es= — (7, —ver,) [6.39)

T

From equation {5.37],

N=Tr&
i d

— =g=—{re

el S

Using Hooke's Law, we can write eguation (6.38) as

%{r:r — VT, )= %{%[nru - m]’:'_i {6.44)
Latra, =) (641

Then from eguation (§.38)

Ty = —— 4 G424
1] I:# .I' I: L]

Substruims these n equation (§.40), we obtain
: |::I": z o
r —‘}+ ri— ¥y+E4+v)+pwr =0
dr” dr

The solution of the above differenfial equation is

y=Cr+c [=|- | 222 | (6.43)



From Equations (6.41) and {6.42), we ebfam

[ 1 3 ... el -
a=0+C | = -[22 Jow's? (6:44)
L% i S R
1 1+3w )
TJu=C-C, {— —| : ||':"'4'--|"'= (643)
Lr 2 J
The constants of infepraton are determined from the boundary conditions.
Solid Disk

For a sohid disk, it & required to fake ©; = {0, otherwise, the stresses o and o becomes
infinite af the cemfre. The comstamt O is determined from the condition at the periphery
(r=>05) of the disk. Ifthere are no forces applied, then

(s = -

I+v

Thersfors, € = | |,m B (6.46)

Hence, Equations (6.44) and (6 45) become.

=1 2 e (57— ) (64T
A
L E
The sresses attam thelr maximms valaes 2t the cenme of the disk, 1a, atr =0
s 3+V Y a0 "
Therefore, o, = . | (6.49)

Circular Disk with a hole:
Lat @ = Badius of the hale.

If there are po forces applied at the boundarses g and b, then
|:ﬂr_.:||r-1 — D. |:”r_:|r-i- = ﬂ'
from which we find that

p

e |I:'|-+'|

Im



Substifutmg the above in Eguations (6.44) and (6.253). we obiain

Lripd | R
The radial stmess o7 reaches its maximmam at F = +f af , whare

-_':' T ] 1 . E
I.'\::r-'.:l'ﬁ: — | E I_l "‘l-.- ':_Er_ ﬂ-__l- I_ﬁ.:lz_:l

The maximum circunsferential stress is at the inmer boundary, where

(34w} o o I—w } 5| :,
(O =] —— oW B° 4| — |* | (6.53)
1 -I ] 1 (e I (R ]

The displacement u, for all the cases considered can be caloulated as below:
'I - ] -ﬁ ]
N =reg= —{a, —vi, {6.34)
E

Stress concentration

While discussing the case of simple tension and compression, it has been
assumed that the bar has a prismatical form. Then for centrally applied
forces, the stress at some distance from the ends is uniformly distributed
over the cross-section. Abrupt changes in cross-section give rise to great
irregularities in stress distribution. These irregularities are of particular
iImportance in the design of machine parts subjected to variable external
forces and to reversal of stresses. If there exists in the structural or
machine element a discontinuity that interrupts the stress path, the stress
at that discontinuity may be considerably greater than the nominal stress
on the section; thus there is a “Stress Concentration” at the discontinuity.
The ratio of the maximum stress to the nominal stress on the section is
known as the 'Stress Concentration Factor'. Thus, the expression for the
maximum normal stress in a centrically loaded member becomes

o= K{% [ (6.55)
where A is either gross or net area (area at the reduced section), K = stress

concentration factor and P is the applied load on the member. In Figures
6.8 (a), 6.8(b) and 6.8(c), the type of discontinuity is shown and in Figures



6.8(d), 6.8(e) and 6.8(f) the approximate distribution of normal stress on a

transverse plane is shown.

Stress concentration is a matter, which is frequently overlooked by
designers. The high stress concentration found at the edge of a hole is of
great practical importance. As an example, holes in ships decks may be
mentioned. When the hull of a ship is bent, tension or compression is
produced in the decks and there is a high stress concentration at the holes.
Under the cycles of stress produced by waves, fatigue of the metal at the
overstressed portions may result finally in fatigue cracks.

(d)

iR

(e)

Figure 6.8 Irregularities in Stress distribution
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Bending of beams and plates:

Bending of a cantilever Beam: Consider a canti-
lever having a narrow rectangular cross section of unit width bent by a
force P applied at the end (Fig. 26). The upper and lower edges are
free from load, and shearing forces, having a resultant P, are dis-
tributed along the end £ = 0. These conditions can be satisfied by a,
proper combination of pure shear,

with the stresses (e) of Art. 17 repre- =7 Z -://
sented in Fig. 24. Superposing the T 2
pure shear 7., = —b2 on the stresses _ Xc %
(e), we find D Y 7

gr = dazy, oy = 0 )

' d a Y

Toy = —bs — _2f y? (@) Fia. 26.

To have the longitudinal sides y = +¢ free from forces we must have

(sz)rmd:c = —by — 2 —c2=0

from which
2b;
62

d4=

To satisfy the condition on the loaded end the sum of the shearing
forces distributed over this end must be equal to P. Hence!?

—f rx,,-d'y=[ (bz“g' )d?J—

from which
p, = SF
T 4¢
Substituting these values of ds and b, in Eqs. (a) we find
3P
Tz = — 5 3%V oy =0 _

ST\ Te)



Noting that §c? is the moment of inertia I of the cross section of the
cantilever, we have '

Paxy

om= =77 @ =0
P | ()
Ty = —'75(02“’92)

This coincides completely with the elementary solution as given in
books on the strength of materials. It should be noted that this
solution represents an exact solution only if the shearing forces on the
ends are distributed according to the same parabolic law as the shear-
ing stress 7., and the intensity of the normal forces at the built-in end
is proportional to y. If the forces at the ends are distributed in any
other manner, the stress distribution (b) is not a correct solution for the
ends of the cantilever, but, by virtue of Saint-Venant’s principle, it can
be considered satisfactory for cross sections at a considerable distance
from the ends.

Let us consider now the displacement corresponding to the stresses
(b). Applying Hooke’s law we find

«~m"5-"E “ % E_E
- v W _ T _ _ P s e
Yw—ay Bx'- G - 2IG(C y_) (d)

The procedure for obtaining the componehts u and v of the displace-
ment consists in integrating Eqgs. (¢) and (d). By integration of Eqgs.
(c) we find

___ Pa¥y _ vPay?

in which () and f,(z) are as yet unknown functions of y only and =
only. Substituting these values of and v in Eq. (d) we find

P2 df(y) | vPy*  dhl) _ _ P e
szit a, temr v oa ~ @ VY




In this equation some terms are functions of z only, some are functions
of y only, and one is independent of both z and y. Denoting these

groups by F(z), G(y), K, we have

Pz? | dfi(r) _df(y) , vPy® _ Py’

F@)=— g+ =g W ="g T35~ 2a
Pc?
K=-3m%

and the equation may be written
Fiz) +G) = K

Such an equation means that F(z) must be some consttmt.d and G(y)
some constant e. Otherwise F(z) and G(y) would vary W:]th z and ¥,
cespectively, and by varying x alone, or y alone, the equality would be

violated. Thus
Pc?

et+d=— 231G (e)
and
dfi(x) _ Pa? dfty) _ _ Py* | Py
& —2EITY g T "eErtamgte
Functions f(y) and fi(z) are then
Py Pyd
fly) = _EE’Z} -I-G?G—I-ey-i-g

Pzx?
Ji(x) _6"_E7+d"’+h

Substituting in the expressions for  and » we find

— szy _ pPy3 PyS
“= T 9Fr T6EI VeI TS
vPry* . Px? (9)

The constants d, ¢, g, h may now be determined from Eq. (e) and from
the three conditions of constraint which are necessary to prevent the



beam from moving as a rigid body in the zy-plane. Assume that the
point A, the centroid of the end cross section, is fixed. Then w and v
are zero for z = [, y = 0, and we find from Egs. (g),

_ PP
6E71
The deflection curve is obtained by substituting ¥ = 0 into the

second of Egs. (g). Then

(hms = gz — o — d(l — ) (h)

g=0 k= dl

For determining the constant d in this equation we must use the third
condition of constraint, eliminating the possibility of rotation of the
beam in the zy-plane about the fixed point A. This constraint can be
realized in various ways. Let us consider two cases: (1) When an ele-
ment of the axis of the beam is fixed at the end A. Then the condition

of constraint is
ov
(&) =0 | ®

(2) When 3 vertical element of the cross section at the point A is fixed,

Then the condition of constrai_nt is

Ju
ay)y={)

In the first case we obtain from Eq. (k)

PP
d=~351
and from Eq. (¢) we find

' Y i
¢ = 9g1 ~ 2IG
Substituting all the constants in Eqgs. (g), we find
Puty WPy | Py N (ﬂf_ _gg)y
“= T oEI T BEI ' 6IG T \2EI 2IG
wPoy? | Pa® _ Plw PP
V"= 9Rr T 6EI  2EI " 3EI

(m)




The equation of the deflection curve is

_Pst_ Plw , PU
()i = GBI ~ 2B T 3EI )

which gives for the deflection at the loaded end (x = 0) the value
Pl*/3EI. This coincides with the value usually derived in elementary
books on the strength of materials.

To illustrate the distortion of cross sections produced by shearing
stresses let us consider the displacement u at the fixed end (z = 1).
For this end we have from Eqs. (m),

vPy> Py? Pcly

'(u):r:%l = — 6Bl + 810 —_ I
ou _ _wPy* | Py* _ Pc?
(6y)z=z = ~3gr T 21g " 21G - (0)

ouy P 3P

| dy/y=e  2IGT 4G
The shape of the cross section after distortion is as shown in Fig. 27a.
Due to the shearing stress 7, = —83P/4c at the point A, an element of
the cross section at A rotates in the zy-plane about the point A through

an angle 3P/4¢cG in the clockwise direction.
If a vertical element of the cross section is fixed at 4 (Fig. 27b),

instead of a horizontal element of the axis, we find from condition (I)
and the first of Eqgs. (g)

.
- ~ 2EI
and from Eq. (¢) we find
d= — A
2E1 2IG
Substituting in the second of Egs. (g) we find
_Px* PP’z P Pc
W= =571 ~ 287 T 387 T3 ¢ — @ (r)

Comparing this with Eq. (n) it can be concluded that, due to rotation



|

|

|

_|
/J
Lap | @

of the end of the axis at A (Fig. 27b), the deflections of the axis of the
cantilever are increased by the quantity

Pet 3P
o5 (=) = oz 0 —2)

Fra. 27.

This is the so-called effect of shearing force on the deflection of the beam.
In practice, at the built-in end we have conditions different from those
shown in Fig. 27. The fixed section is usually not free to distort
and the distribution of forces at this end is different from that given
by Eqgs. (b). Solution (b) is, however, satisfactory for compara-
tively long cantilevers at considerable distances from the terminals.

Bending of beam by uniform loading: Let a beam of narrow
rectangular cross section of unit width, supported at the ends, be bent

by a uniformly distributed load of intensity ¢, as shown in Fig. 28
The conditions at the upper and lower edges of the beam are:

(“'zﬂ)ﬂ-:lzc = 0, (a'y)y-+c = 0, (‘Ty)y=—c = —q (a)

The conditions at the ends z = +1 are

fcrx,,dy=$ql, fccaxdy=0, fjoa,ydy=0 ®)

—c —



The last two of Eqgs. (b) state that there is no longitudinal force and no
bending couple applied at the ends of the beam. All the conditions
(a) and (b) can be satisfied by combining certain solutions in the form

1
~1HHH£1H?Q |“"‘|_g
é | /1 ¢
< VA - 4 - "I%"“
¥
(@) (5) c)

Fia. 28.

of polynomials as obtained in Art. 17. We begin with solution (g)
illustrated by Fig. 25. To remove the tensile stresses along the side
y = ¢ and the shearing stresses along the sides y = +¢ we superpose a
simple compression ¢, = a; from solution (b), Art. 17, and the stresses
oy = bsy and 7, = —bsx in Fig. 23. In this manner we find

o = ds(x% — 3%
oy = 3dsy® + b3y + a2 (c)
Tay = —dszy® — bax

From the conditions (a) we find

“"dbcz -_ b3 =0
¥dse® + bic + a2 =0
—3dsc® — bic + a2 = —¢q
from which

g
3

S
ﬂhlw

[y}

3
az='—%r bs=z ds = —

Substituting in Egs. (¢) and noting that 2¢3/3 is equal to the moment of
inertia I of the rectangular cross-sectional area of unit width, we find

_ _3¢ 2 Yo _4¢ 2
9= = 4ca(“’y-§y) oI x%'"gy*)

3 2
o= - 433(3 _“2y+§“8)=_ﬁ 3¥ _czy_l“c) @



T = — 3% (@ =¥z = — 57 (¢ — )z

It can easily be checked that these stress components satisfy not only
conditions (&) on the longitudinal sides but also the first two conditions
(b) at the ends. To make the couples at the ends of the beam vanish
we superpose on solution (d) a pure bending, o, = dsy, 0y = 729y = 0,
shown in Fig. 22, and determine the constant d; from the condition at
r = *xl

[ c 3 2
[ TS o

from which

Hence, finally,

(33)

The first term in this expression represents the stresses given by the
usual elementary theory of bending, and the second term gives the
necessary correction. This correction does not depend on z and is
small in comparison with the maximum bending stress, provided the
span of the beam is large in comparison with its depth. For such
beams the elementary theory of bending gives a sufficiently accurate
value for the stresses ¢,. It should be noted that expression (33) is an
exact solution only if at the ends 2 = +! the normal forces are dis-
tributed according to the law

= 3q(f2 2
X=zzs(‘3'y“"5"’”y)

i.e., if the normal forces at the ends are the same as o, for z = +1from
Eq. (33). These forces have a resultant force and a resultant couple
equal to zero. Hence, from Saint-Venant’s principle we can conclude



that their effects on the stresses at considerable distances from the
ends, say at distances larger than the depth of the beam, can be
neglected. Solution (33) at such points is therefore accurate enough
for the case when there are no forces X.

The discrepancy between the exact solution (33) and the approxi-
mate solution, given by the first term of (33), is due to the fact that in
deriving the approximate solution it is assumed that the longitudinal
fibers of the beam are in a condition of simple tension. From solution
(d) it can be seen that there are compressive stresses o, between the
fibers. These stresses are responsible for the correction represented
by the second term of solution (33). The distribution of the com-
pressive stresses o, over the depth of the beam is shown in Fig. 28¢c-
The distribution of shearing stress 7., given by the third of Eqgs. (d),
over a cross section of the beam coincides with that given by the usual
elementary theory.

When the beam is loaded by its own weight instead of the distributed load g,
the solution must be modified by putting ¢ = 2pge in (33) and the last two of Xqs.
(d), and adding the stresses

oz =0, oy = pglc — ¥), 7oy =0 (e

For the stress distribution (¢) can be obtained from Egs. (29) by taking

= }pglcz? + y*/3)

and therefore represents a possible state of stress due to weight and boundary
forces. On the upper edge y = —c we have o, = 2pgc, and on the lower edge
y =¢, o, =0. Thus when the stresses (¢) are added to the previous solution,
with ¢ = 2pge, the stress on both horizontal edges is zero, and the load on the beam
consists only of its own weight.

The displacements u and » can be calculated by the method indi-
cated in the previous article. Assuming that at the centroid of the
middle cross section (x = 0, y = 0) the horizontal displacement is zero
and the vertical displacement is equal to the deflection 8, we find, using
solutions (d) and (33),



° e 3 - - 1 2
u = 2%1[(1% —%—)y+x(§y3 = %czy) + vx(§y3 ~c"y+§c")]

_ q lyt 2 | _ Y _?!f_lzz]}
”‘"ﬁ"i’é“7+§c3y+"(p )3 +F "5V
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1t can be seen from the expression for 4 that the neutral surface of the
beam is not at the center line. Due to the compressive stress

(‘rﬂ)y-=0 = - %

the center line has a tensile strain »q/2E, and we find

vz

(Uy—o = oF

From the expression for » we find the equation of the deflection curve,

2.2 4
(U)y_.o =0 — 2%[[%- — :;'—2 — %621?2 + (1 +%v) (_-_23:2] (f)

Assuming that the deflection is zero at the ends (x = £1) of the center

line, we find
_ 5 q 1224 v
5—2—45;1[” 51?(54“2“)] 34)

The factor before the brackets is the deflection which is derived by the
elementary analysis, assuming that cross sections of the beam remain
plane during bending. The second term in the brackets represents the
correction usually called the effect of shearing force.

By differentiating Eq. (f) for the deflection curve twice with respect
to z, we find the following expression for the curvature:

d 2 — g2 4
@) a5 reGry)] o

It will be seen that the curvature is not exactly proportional to the
bending moment! ¢({? — z?)/2. The additional term in the brackets
represents the necessary correction to the usual elementary formula.



Kirkhhof and Mindlin concept



Module-IIl.
Torsion of Prismatic Bars (St.Venant's approach)

From the study of elementary strength of materials, two important
expressions related to the torsion of circular bars were developed. They are

_ Mr
B
1 M dz
and (= —j d
LI GJ

Here 1 represents the shear stress, M, the applied torque. r the radius at which the stress is

required, G the shear modulus, @ the angle of twist per umit longitudinal length. L the length.
and z the axial co-ordinate.

Also. J = Polar moment of inertia which is defined by | r-d4
y

The following are the assumptions associated with the elementary

approach in deriving above equations.

1. The material is homogeneous and obeys Hooke’s Law.

2. All plane sections perpendicular to the longitudinal axis remain plane
following the application of a torque, i.e., points in a given cross-sectional
plane remain in that plane after twisting.

3. Subsequent to twisting, cross-sections are undistorted in their individual

planes, i.e., the shearing strain varies linearly with the distance from the
central axis.

4. Angle of twist per unit length is constant.

In most cases, the members that transmit torque, such as propeller shaft
and torque tubes of power equipment, are circular or turbular in cross-
section.

But in some cases, slender members with other than circular cross-
sections are used. These are shown in the Figure 7.0.
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Non-Circular Sections Subjected to Torque

While treating non-circular prismatic bars, initially plane cross-sections
[Figure (a)] experience out-of-plane deformation or "Warping" [Figure (b)]
and therefore assumptions 2. and 3. are no longer appropriate.
Consequently, a different analytical approach is employed, using theory of
elasticity.
Genera Solution of the Torsion Problem:
The correct solution of the problem of torsion of bars by couples applied at
the ends was given by Saint-Venant. He used the semi-inverse method. In
the beginning, he made certain assumptions for the deformation of the
twisted bar and showed that these assumptions could satisfy the equations
of equilibrium given by
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ax oy oz
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and the boundary conditions such as
=Gl + Tom + wn

= g+ M + Tyl

NI S

= ON+ Tl + G

i which F,, F;, F. are the body forces. X, ¥, Z are the components of the surface forces per

unit area and [, m, # are the direction cosines.



Also from the uniqueness of solutions of the elasticity equations, it follows
that the torques on the ends are applied as shear stress in exactly the
manner required by the solution itself.

Now, consider a prismatic bar of constant arbitrary cross-section subjected
to equal and opposite twisting moments applied at the ends, as shown in
the Figure below.

Bars subjected to torsion
Samnt-Venant assumes that the deformation of the twisted shaft consists of

1. Rotations of cross-sections of the shaft as in the case of a circular shaft and
2. Warping of the cross-sections that 1s the same for all cross-sections.

The origin of x, ¥, Z in the figure is located at the center of the twist of the cross-section.
about which the cross-section rotates during twisting. Figure 7.1(b) shows the partial end
view of the bar (and could represent any section). An arbitrary point on the cross-section,

point P(x, ¥). located a distance 7 from center of twist 4. has moved to P' (x-u, y+Vv) as a
result of torsion. Assuming that no rotation occurs at end Z = 0 and that ¢ 1s small, the x and
v displacements of P are respectively:

u=-(rtl)sina

Butsina =y /r
Therefore, u = (réh) v/ = -vt. (a)
Similarly. v = (rfl) cosa = (rél) xir =x6L (b)

where ¢, 1s the angle of rotation of the cross-section at a distance z from the origin.

The warping of cross-sections is defined by a function i as

w=0vy(x ¥y (c)



Here. the equations (a) and (b) specify the rigid body rotation of any cross-section through :
small angle ¢_. However. with the assumed displacements (a). (b) and (c). we calculate the
components of stram from the equations given below.

& v 5
&= &G s &=
o cy oz
o cu v v ow
Yo© = T M= R
gy x cz oy
oW cu
and Yo = — + —
o F

Substituting (a). (b) and (¢) in the above equations. we obtain
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Also. by Hooke's Law. the stress-strain relationships are given by

E=2G5+ A, T;=0%
0, =2Gg + e, T.=GY

G.=2Ge+le, =4
where e=g+ g t+§&

vE

andA=___"—
(1+v)(1-2v)

Substituting (a). (b) and (¢) in the above equations. we obtain
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It can be observed that with the assumptions (a). (b) and (¢) regarding deformation, there will
be no normal stresses acting between the longitudinal fibers of the shaft or in the longitudinal
direction of those fibers.  Also., there will be no distortion in the planes of

cross-sections. since &, & and ), vanish. We have at each point, pure chear defined by the

components 7. and 7.

However. the stress components should satisfy the equations of equilibrinm given by:

do, Uty OT

=SB =)
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Assuming negligible body forces. and substituting the stress components mto equilibrium
equations. we obtain
or &1 or. Oty
—= =0, _‘:' =0. —+ _\_" =1
dz oz ox v
Also. the function y (x, y), defining warping of cross-section must be deternuned by the

equations of equilibrium.

Therefore. we find that the function ¥ must satisfy the equation
Ay & {I.f.-"

2 =4

CxX I!'"lr
Now. differentiating equation (d) with respect to ¥ and the equation () with respect to x. and
subtracting we get an equation of compatibility
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Therefore the stress in a bar of arbitrary section may be determined by solving above

Equations along with the given boundary conditions.

Boundary Conditions:
Now, consider the boundary conditions given by

X =cl+t,m+rz.n

Y =am+ 5.n + 5,l
Z = oh+ Gl + 5.m
For the lateral surface of the bar, which 1s free from external forces acting on the boundary

and the normal n to the surface 1is perpendicular to the =z-axis. we have

X=Y=Z=0andn =0. The first two equations are identically satisfied and the third
gives,

L+ 7, m=0
which means that the resultant shearing stress at the boundary is directed along the
tangent to the boundary, as shown in the Figure below.

(b)

Cross-section of the bar & Boundary conditions
Considering an infinitesimal element abe at the boundary and assuming that 5'is increasing

in the direction from ¢ to a.

ax
m=cos(N, y)=- —
(N, ¥) 1S



The above equation becomes
dv { i - %

=0
\ds) “\ds)

w “ ' g‘ ns “

Thus each problem of torsion is reduced to the problem of finding a function y satisfying
equation and the boundary condition given above.

Stress function method: (Prandtl approach)
As in the case of beams, the torsion problem formulated above is commonly solved by
introducing a single stress function. This procedure has the advantage of leading to
simpler boundary conditions as compared to Equation given above. The method is
proposed by Prandtl. In this method, the principal unknowns are the stress components
rather than the displacement components as in the previous approach.
Based on the result of the torsion of the circular shaft. let the non-vanishing components be
I, and 7,.. The remaining stress components ¢, o, and @, and 7, are assumed to be zero.
In or del m satlsf} the equations of equilibrium. we should have
ot ot ot ot

=0, —+—
oxX cy

-
Il
e

= _p

...‘
58]
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The first two are already satisfied since 7. and .. as given by Equations (d) and (e) are
independent of z.

In order to satisfy the third condition. we assume a function ¢ (x, y) called Prandtl stress
funetion such that
Tl &l

- = S

oy (5 8

With this stress function, (called Prandtl torsion stress function), the third
condition is also satisfied. The assumed stress components, if they are to
be proper elasticity solutions, have to satisfy the compatibility conditions.
We can substitute these directly into the stress equations of compatibility.
Alternately, we can determine the strains corresponding to the assumed
stresses and then apply the strain compatibility conditions.

Therefore from above Equations , we have

{ q-": :?'(,?5

= GO — _
v i ax ay




Eliminating y by differentiating the first with respect to y. the second with respect to x, and
subtracting from the first, we find that the stress function must satisty the differential
equation

-3 -7
g 0o
— Tt = 2GH

cx” Oy

-3

: 2
it B i
or —+——=

oy
where H =-2G{
The boundary condition becomes, introducing above Equation.
F_qbd_J } cg dx . do —b
oy dS c¢xdS dS

This shows that the stress function f must be constant along the boundary of the cross
section. In the case of singly connected sections, example, for solid bars, this constant
can be arbitrarily chosen. Since the stress components depend only on the differentials
of ¢, for a simply connected region, no loss of generality is involved in assuming ¢ = 0 on
S. However, for a multi-connected region, example shaft having holes, certain additional
conditions of compatibility are imposed. Thus the determination of stress distribution
over a cross-section of a twisted bar is used in finding the function f that satisfies above
Equation and is zero at the boundary.

Conditions at the Ends of the Twisted bar

On the two end faces, the resultants in x and y directions should vanish, and the
moment about A should be equal to the applied torque M:. The resultant in the x-

direction is
Eq'll'.-'li

jj E'x:dl'dj-' =: ‘- J Z:__T dxdy = j d‘-’fjid}:

Therefore. _” r dxdy =0

Since ¢h1s constant around the boundary. Similarly. the resultant in the y-direction 1s
O
” r__dxdy = _F | — dxdy
. 3 ac
2 f" )
= [av|—dx
- - E 1‘



hence, I ‘-rﬁd‘&'ﬁ‘_‘r‘ =0

Thus the resultant of the forces distributed over the ends of the bar is zero, and these
forces represent a couple the magnitude of which is

M, = ”{:{rs,: ¥r,. )dxdy

- Cih i
”-f:i—l y—)dxdy
Y7 ox v

Therefore.

M,=_J|

r do
o dy JJ 22 dvay
(3 § cy
Integrating by parts. and observing that ¢ = 0 at the boundary, we get

M, = “ pdxdy + ' [ﬁ“dl‘d_‘lf‘

¥ W

M, =2 j| ddxdy

Hence, we observe that each of the integrals in Equation contributing one half of the
torque due to txz and the other half due to tyz. Thus all the differential equations and
boundary conditions are satisfied if the stress function ¢ obeys above Equations and the
solution obtained in this manner is the exact solution of the torsion problem.

Torsion of thin walled open and closed sections

Consider a thin-walled tube subjected to torsion. The thickness of the tube
may not be uniform as shown in the Figure below.
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Torsion of thin walled sections

Since the thickness is small and the boundaries are free, the shear
stresses will be essentially parallel to the boundary. Let t be the magnitude
of shear stress and t is the thickness.



Now, consider the equilibrium of an element of length D | as shown in
Figure below. The areas of cut faces AB and CD are t1: D | and t2 D |
respectively. The shear stresses (complementary shears) are t; and t.

For equilibrium in z-direction. we have

nh Al + b AI=0

Therefore. 1; f; = 1 ; = ¢ = constant

Hence the quantity 7 f 1s constant. This 1s called the shear flow g. since the equation is
similar to the flow of an incompressible liquid in a tube of varying area.

Determination of Torque due to shear and Rotation:

AF=qds

Cross section of a thin-walled tube and torque due to shear
Consider the torque of the shear about point O

The force acting on the elementary length dS of the tube = AF = rtdS =q dS
The moment arm about O 1s i and hence the torque = AM, = (gdS) h
Therefore. AM, = 2qdA

where dA 1s the area of the triangle enclosed at O by the base dS.
Hence the total torque 1s

M,=X2qdA+

Therefore. M, = 2g4

Where A is the area enclosed by the centre line of the tube



To determine the twist of the tube

In order to determune the twist of the tube, Castigliano's theorem 1s used. Referring to Figure
T 7

7(b). the shear force on the element is 71 dS = gdS. Due to shear strain . the force does
work equal to AU

. 1 ,
ie. AU = E(rde}a

=%(r 1dS)y Al

1 e
—E{rIdS}..M.E (since T=Gy)

L

't dSAl
2Gt
_ g dsAl
B¢
q Al ds
T
M Al ds
B4°G t
Therefm'e the total elastic strain energy is
" 54%G ﬂ)_

Hence. the twist or the rotation per unit length (Al=1) 1s
oUu M das
H= B j;

AU =

[

oM, 44°G
2q4 ¢dS

or = q, —
14°GY t

ds

or 0= g —

246" ¢



Torsion of thin walled multiple cell closed section

t

Torsion of thin-walled multiple cell closed section



Consider the two-cell section shown in the Figure 7.8, Let 4; and 4, be the areas of the cells

1 and 2 respectively. Consider the equilibrium of an element at the junction as shown in the
Figure 7.8(b). In the direction of the axis of the tube, we can write

—T]fl M"‘thz Al + 1'31‘35.1 =0

or 0 tl = T 1‘3 + T tg

Le. 1=+ ¢
This 1s again equivalent to a fluid flow dividing itself into two streams. Now. choose

moment axis, such as point O as shown in the Figure 7.9.

Figure. 7.2 Section of a thin walled multiple cell beam and moment axis

The shear flow in the web is considered to be made of g, and —g,. since ¢; = ¢ - ¢>.
Moment about O due to g; flowing mn cell 1 (including web) 1s
M, =1q:4,

Sinularly. the moment about O due to ¢> flowing in cell 2 (meluding web) 1s

M., =2q> (A2+41) - 2q24,

The second term with the negative sign on the right hand side is the moment due to shear
flow g, in the nuddle web.

Therefore. The total torque 1s

MI' = Mfl + M! 2

M, =2q14, + 2¢24, (a)
To Find the Twist (6)

For continuity. the twist of each cell should be the same.

We have



or 2GH = —

Leta; = cfd—s tor Cell 1 meluding the web
i

d .
= #— for Cell 2 including the web
i 2

as
= qET for the web only

Then for Cell 1

1
2GH= TEHIQI a5,q,) (b)
For Cell 2
1
2GO= (a.q, — apq;) (c)

e

Equations (a). (b) and (¢) are sufficient to solve for ¢, ¢» and &

Thermal stress.

The simplest case of Thermal stress distribution:
the causes of initial stresses in a body is nonuniform heating. With
rising temperature the elements of a body expand. Such an expansion
generally cannot proceed freely in a continuous body, and stressesdue
to the heating are set up. In many cases of machine design, such as
in the design of steam turbines and Diesel engines, thermal stresses are
of great practical importance and must be considered in more detail.
The simpler problems of thermal stress can easily be reduced to prob-
lems of boundary force of types already considered. As a first example




let us consider a thin rectangular plate of uniform thickness in which
the temperature T is an even function of y (Fig. 222) and is inde-
pendent of x and z. The longitudinal thermal expansion «T will be

entirely suppressed by applyin
: g to each element of the plate th i-
tudinal compressive stress plate the long!

o) = —aTl (@)

Smce.the plate is free to expand laterally the application of the stresses
(a? will not produce any stresses in the lateral directions and to main-
ta}n the stresses (a) throughout the plate it will be necessary to dis-
tribute compressive forces of the magnitude (a) at the ends of the plate
o.nly. These con?pressive forces will completely sﬁppress any expan-
2;): ;f the plate in the direction of the z-axis due to the temperature
o a] To get the thermal stresses in the plate, which is free from

ernal forces, we have to superpose on the stresses (q) the stresses

produced in the plate by tensile forces of intensity «TE distributed at
the ends. These forces have the resultant

| f_tc aTE dy

and at a sufficient distance from the ends they will produce approxi-
mately uniformly distributed tensile stress of the magnitude

R

§E f . aTE d’y
50 that the thermal stresses in the plate with free ends at a considerable
distance from the ends will be

+e
0z = % aTE dy — oTE )
Assuming, for example, that the temperature is distributed paraboli-
cally and is given by the equation

2
T = To(l—-%)



we get, from Eq. (b),
2 ¥
0e = 5 alol = aToE (1 — 5 ()

This stress distribution is shown in Fig. 222b. Near the ends the
stress distribution produced by the tensile forces is not uniform and
can be calculated by the method explained on page 167. Superposing
these stresses on the compressive stresses (a), the thermal stresses near
the end of the plate will be obtained.

If the temperature T' is not symmetrical with respect to the z-axis,
we begin again with compressive stresses (a) suppressing the strain e,.
In the nonsymmetrical cases these stresses give rise not only to a result-

ant force — f _':G oET dy but also to a resultant couple — f _—1: aETy dy,

and in order to satisfy the conditions of equilibrium we must superpose
on the compressive stresses («) a uniform tension, determined as before,
and bending stresses ¢’’, = oy/c determined from the condition that
the moment of the forces distributed over a cross section must be zero.
Then

+e .2 te
wrdy _ f aBETydy = 0

g c —O

from which

(o]

3 te +e
=53 f aETy dy, o = 2§% f aETy dy

-

Then the total stress is

3 1 +ea 3y +e
02 = —aBT + 5 _ oET dy + 55 f aETy dy (d)

I.n th.is discussion it was assumed that the plate was thin in the
z-direction. Suppose now that the dimension in the z-direction is
large. We have then a plate with the zz-plane as its middle plane, and

a thickness 2¢. Let the temperature T be, as before, independent of z
and z, and so a function of y only.



The free thermal expansion of an element of the plate in the z- and
z-directions will be completely suppressed by applying stresses ¢, o,
obtained from Eqs. (3), page 7, by putting ¢, = ¢, = —aT, g, = 0.
These equations then give

aET
U'z—O',——l_y (e)

The elements can be maintained in this condition by applying the dis-
tributions of compressive force given by (e) to the edges (z = constant,
z = constant). The thermal stress in the plate free from external
force is obtained by superposing on the stresses (¢) the stresses due to
application of equal and opposite distributions of force on the edges.
If T is an even function of y such that the mean value over the thick-
ness of the plate is zero, the resultant force per unit run of edge is Zero,
and by Saint-Venant’s prineiple (Art. 18) it produces no stress except
near the edge.

If the mean value of T is not zero, uniform tensions in the z- and
z-directions corresponding to the resultant force on the edge must be
superposed on the compressive stresses (¢). If in addition to this the
temperature is not symmetrical with respect to the xz-plane, we must

add the bending stresses. In this manner we finally arrive at the
equation

- oTE 1 +e
Oz = g, = 1—P+2C(1—v) [_c aTEdy

+ o2 T armyay o
203(1 - v) —e yay

which is analogous to the Eq. (d) obtained before: By 1'1sin.g Eq ( j)f
we can easily calculate thermal stresses in a plate, if the distribution o

temperature T' over the thickness of the plate is known.

Consider, as an example, a plate which has initially a uniform itemfera.tuzzai’z
i i , intaini rfaces y = *catacon
ich i ooled down by maintaining the su .
:end W:.iﬁrf 1?;1[1% cBy Fourier’s theory the distribution of temperature at any
mpe 1.

instant ¢ is 1 . .
Y oy .
T=T 4+ % (T — Th) (e'!’:f cos "—rz—c — ge'i’a* cos 5 + ) g



in which p1, ps = 3%p1, + « - s Pn = n*py, . - - ,are certain constants. Substitut-
ing in Eq. (f), we find

B T [ (2 con ) + herns (4 oo
o= = LT =) [ (5 — o) T3 (5 T oot 2

+%3—mt (32;——0085%—3) + - - ] (h)

After a moderate time the first term acquires dominant importance, and we can
assume

4aE(To — Th) - (2 ﬂ)
2¢

Oz = Oz = 1]'(1——]}') ;""COS

For y = ¢ we have tensile stresses

4aE(Ty — T e‘mig
(1 — ») T

Oy = 0z =

At the middle plane ¥ = 0 we obtain compressive stresses

O = 0z &

The points with zero stresses are obtained from the equation

2 Ty _
o COS 5 = 0
from which
y = +0.560¢

If the surfaces y = +c¢ of a plate are maintained at two different
temperatures T1, T, & steady state of heat flow is established after a
certain time and the temperature is then given by the linear function

=%(T1+Tz)+%(T1+T2)% - (2) -

Substitution in Eq. (f) shows that the thermal stresses are zero,?
provided, of course, that the plate is not restrained. If the edges a.lfe
perfectly restrained against expansion and rotation, the stress induced
by the heating is given by Eqgs. (¢). For instance if 7> = —7T1 we
have from (z)

o,y
T =T (»



and Egs. (e) give

(k)

The maximum stress 18

(e, = (). = 2 [0

v

The thickness of the plate does not enter in this formula, but in the
case of a thicker plate a greater difference of temperature between the
two surfaces usually exists. Thus a thick plate of a brittle material is
more liable to break due to thermal stresses than a thin one.

As a last example let us consider a sphere of large radius and assume
that there occurs a temperature rise 7' in a small spherical element of
radius a at the center of the large sphere. Since the element is not free
to expand a pressure p will be produced at the surface of the element.
The radial and the tangential stresses due to this pressure at any point
of the sphere at a radius r > a can be calculated from formulas (197)
and (198) (see page 359). Assuming the outer radius of the sphere as
very large in comparison with ¢ we obtain from these formulas

ad a?
T = — 1;—3; gy = -}2-’;3 (m)
At the radius r = @ we obtain
o= —1p, 0 =3P

and the increase of this radius, due to pressure p, is
Ar = (ae)r—a = %— o0 — ¥(0r 4 6)lrea = L= (1 + ¥)

This increase must be equal to the increase of the radius of the heated
spherical element produced by temperature rise and pressure p. Thus
we obtain the equation

pa _ pa
aTa — T (1 — 2») 5% 1 4 »)
from which

2 oTE
=§1——v (n)

Substituting in equations (m) we obtain the formulas for the stresses
outside the heated element

_ 2 oTEd* . _1 oTEa? ©
T T30 =0 tT 30 — oyt



Module-1V
Theoretical concepts of plasticity

The classical theory of plasticity grew out of the study of metals in the
late nineteenth century. It is concerned with materials which initially deform
elastically, but which deform plastically upon reaching a vyield stress. In
metals and other crystalline materials the occurrence of plastic
deformations at the micro-scale level is due to the motion of dislocations
and the migration of grain boundaries on the micro-level. In sands and
other granular materials plastic flow is due both to the irreversible
rearrangement of individual particles and to the irreversible crushing of
individual particles. Similarly, compression of bone to high stress levels will
lead to particle crushing. The deformation of microvoids and the
development of micro-cracks is also an important cause of plastic
deformations in materials such as rocks.

A good part of the discussion in what follows is concerned with the
plasticity of metals; this is the ‘simplest’ type of plasticity and it serves as a
good background and introduction to the modelling of plasticity in other
material-types. There are two broad groups of metal plasticity problem
which are of interest to the engineer and analyst. The first involves
relatively small plastic strains, often of the same order as the elastic strains
which occur. Analysis of problems involving small plastic strains allows one
to design structures optimally, so that they will not fail when in service, but
at the same time are not stronger than they really need to be. In this sense,
plasticity is seen as a material failurel.

The second type of problem involves very large strains and deformations,
so large that the elastic strains can be disregarded. These problems occur
in the analysis of metals manufacturing and forming processes, which can
involve extrusion, drawing, forging, rolling and so on. In these latter-type
problems, a simplified model known as perfect plasticity is usually
employed (see below), and use is made of special limit theorems which
hold for such models.

Plastic deformations are normally rate independent, that is, the stresses
induced are independent of the rate of deformation (or rate of loading). This
Is in marked contrast to classical Newtonian fluids for example, where the



stress levels are governed by the rate of deformation through the viscosity
of the fluid.

Materials commonly known as “plastics” are not plastic in the sense
described here. They, like other polymeric materials, exhibit viscoelastic
behaviour where, as the name suggests, the material response has both
elastic and viscous components. Due to their viscosity, their response is,
unlike the plastic materials, rate-dependent. Further, although the
viscoelastic materials can suffer irrecoverable deformation, they do not
have any critical yield or threshold stress, which is the characteristic
property of plastic behaviour. When a material undergoes plastic
deformations, i.e. irrecoverable and at a critical yield stress, and these
effects are rate dependent, the material is referred to as being viscoplastic.

Plasticity theory began with Tresca in 1864, when he undertook an
experimental program into the extrusion of metals and published his
famous vyield criterion discussed later on. Further advances with yield
criteria and plastic flow rules were made in the years which followed by
Saint-Venant, Levy, Von Mises, Hencky and Prandtl. The 1940s saw the
advent of the classical theory; Prager, Hill, Drucker and Koiter amongst
others brought together many fundamental aspects of the theory into a
single framework. The arrival of powerful computers in the 1980s and
1990s provided the impetus to develop the theory further, giving it a more
rigorous foundation based on thermodynamics principles, and brought with
it the need to consider many numerical and computational aspects to the
plasticity problem.

e Plastic deformation is a non reversible
process where Hooke’s law is no longer
valid.

e One aspect of plasticity in the viewpoint
of structural design is that it is concerned
with predicting the maximum load, which ;
can be applied to a body without causing strain
excessive yielding.

e Another aspect of plasticity is about the
plastic forming of metals where large
plastic required to

stress

Plastic and elastic deformation
in uniaxial tension



e True stress-strain curve for typical ductile
materials, i.e., aluminium, show that the stress
- strain relationship follows up the Hooke’s law
up to the yield point, oo

e Beyond oo, the metal deforms plastically
with strain-hardening. This cannot be related ’
by any simple constant of proportionality. E, 8 & £

 If the load is released from straining up t0  Typical true stress-strain
point A, the total strain will immediately curves for a ductile metal.
decrease from €; to €2 by an amount of o/E.

e The strain €1-¢2 is the recoverable elastic
strain. Also there will be a small amount of the
plastic strain €>-e3 known as anelastic
behaviour  which  will disappear by

time.(neglected in plasticity theories.)

e The engineering stress — strain  Stress
curve is based entirely on the Tl Saras-S R cinvy
original dimensions of the
specimen (this cannot represent
true deformation characteristic of
the material).

° The true Stl‘eSS _ Strain curve iS englireering Sress-51rain curve
based on the instantaneous
specimen dim ensions

Strain

Engineering stress-strain and
true stress-strain curves.

Yield criteria

Commencement of plastic deformation in materials is predicted by vyield
criteria. Yield criteria are also called theories of yielding. A number of yield
criteria have been developed for ductile and brittle materials.

Tresca yield criterion:

It states that when the maximum shear stress within an element is equal to or greater
than a critical value, yielding will begin.



Tmax= k

Where k is shear yield strength.

or Tmax = (01— T3)/2 = k where o, and g5 are principal stresses
or G1—J3=Y

For uniaxial tension, we have k=Y/,2

Here Y or k are material properties. The intermediate stress ag;has no effect on yielding.

Von Mises criterion
According to this criterion yielding occurs when
(0, — 03)* + (02 — 03)* + (g5 — 0,)* = 2V* = 6k*

For plane strain condition, we have: o.=( 0y + 03)/2

Hence, from the distortion energy criterion, we have g;— 03 = % ¥ Herg, %]" is called plane

strain yield strength. Von Mises criterion can also be interpreted as the yield criterion which
states that when octahedral shear stress reaches critical value, yielding commences.

The octahedral shear stress is the shear stresses acting on the faces of an octahedron, given by:

Toct = %[{m_ — o) + (0, —03)* + (03 — 01"

According to Tresca criteria we know, {0y — 03)/2 = k. Therefore,
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Yield loci for two yield criteria in plane stress



Von Mises yield criterion is found to be suitable for most of the ductile
materials used in forming operations. More often in metal forming, this
criterion is used for the analysis. The suitability of the yield criteria has
been experimentally verified by conducting torsion test on thin walled tube,
as the thin walled tube ensures plane stress. However, the use of Tresca
criterion is found to result in negligible difference between the two criteria.
We observe that the von Mises criterion is able to predict the yielding
independent of the sign of the stresses because this criterion has square
terms of the shear stresses.

Effective stress and effective strain:

Effective stress is defined as that stress which when reaches critical value,
yielding can commence.

For Tresca criterion, effective stress is  Ge= 01— 03

For von Mises criterion, the effective stress is
1 ; - 2171/2
1101 — 02)? + (0, — 3) + (03 — )]}

The factor 1/V2 is chosen such that the effective stress for uniaxial tensile loading is equal to

uniaxial yield strength Y.

The corresponding effective strain is defined as:

Eeff =§ (&1 — €3)
From von Mises criterion:
Effective strain = (v2/3){ (g, — &,)% + (&, — £3)% + (&5 — 81)2J}H2
For Tresca:
Effective strain = (2/3)(&; — &5)

For uniaxial loading, the effective strain is equal to uniaxial tensile strain.

Note: The constants in effective strain expressions, given above are chosen so that for uniaxial

loading, the effective strain reduces to uniaxial strain.
Normal strain versus shear strain:
We know for pure shear: o1=-03 andoi=1

Therefore from the effective stress equation of Tresca we get: Effective stress = 201 = 213



Similarly using von Mises effective stress, we have

Effective stress =v30; = V3,

A plane strain compression forging process

Plastic stress strain relationship,

Elastic plastic problems in bending and torsion.



