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Module-I 
Elasticity: All structural materials possess to a certain extent the property 
of elasticity i.e. if external forces, producing deformation of a structure, 
don’t exceed a certain limit; the deformation disappears with the removal of 
the forces. In this course it will be assumed that the bodies undergoing the 
action of external forces are perfectly elastic, i.e. that they resume their 
initial form completely after removal of forces. 

The simplest mechanical test consists of placing a standardized specimen 

with its ends in the grips of a tensile testing machine and then applying load 

under controlled conditions. Uniaxial loading conditions are thus 

approximately obtained. A force balance on a small element of the 

specimen yields the longitudinal (true) stress as 

𝜎 =
𝐹

𝐴
 

Where, F is the applied force and A is the (instantaneous) cross sectional 

area of the specimen. Alternatively, if the initial cross sectional area A0 is 

used, one obtains the engineering stress 

𝜎𝑒 =
𝐹

𝐴0
 

For loading in the elastic regime, for most engineering materials 𝜎𝑒 = 𝜎 

Stress: A body under the action of external forces, undergoes distortion 

and the effect due to this system of forces is transmitted throughout the 

body developing internal forces in it. To examine these internal forces at a 

point O in Figure (a), inside the body, consider a plane MN passing through 

the point O. If the plane is divided into a number of small areas, as in the 

Figure (b), and the forces acting on each of these are measured, it will be 

observed that these forces vary from one small area to the next. On the 

small area DA at point O, a force DF will be acting as shown in the Figure 

2.1 (b). From this the concept of stress as the internal force per unit area 

can be understood. Assuming that the material is continuous, the term 

"stress" at any point across a small area ∆A can be defined by the limiting 

equation as below. 



 
Force acting on a Body 

 
where ∆F is the internal force on the area ∆A surrounding the given point. 

Stress is sometimes referred to as force intensity. 

Notation of Force and Stress: There are two kinds of external forces which      

may act on bodies force distribution over the surface of the bodies 

 



the components of stress acting on the sides of this element and the directions 

taken as positive are as indicated. For the sides of element perpendicular to the 

 

 

 

Components of Stress:To describe the stress acting on the six sides of a cubic 

 

                 follows from the fact that in reducing one 



 

 

Hence for two perpendicular sides of a cubic elements the components of 

 

Components of strain:  

  

 
  elastic body. If the body undergoes a deformation and 𝒖, 𝒗, 𝒘 



 

 

 

 



 

     the angle between any two can be calculated later on. 

     The six quantities 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 , 𝛾𝑥𝑦, 𝛾𝑥𝑧 𝑎𝑛𝑑 𝛾𝑦𝑧 are called the components of strain. 

Generalized Hooke’s Law: 

Linear elastic behavior in the tension test is well described by Hooke's law, namely 

𝜎 = 𝐸𝜀 
where E is the modulus of elasticity or Young's modulus. For most materials, this is a 
large number of the order of 1011 Pa. 
 
The statement that the component of stress at a given point inside a linear elastic 
medium are linear homogeneous functions of the strain components at the point is 
known as the generalized Hooke's law. Mathematically, this implies that 

 

 

 

 

 

 



Stress-Strain relations for Isotropic-elastic solid: 

this formula reduced to its simplest form as 

 



Stress-Strain relations for Anisotropic-elastic solid: 

 

 

 



 



 

 

Stress tensor: 

Let O be the point in a body shown in Figure 2.1 (a). Passing through that 
point, infinitely many planes may be drawn. As the resultant forces acting 
on these planes is the same, the stresses on these planes are different 
because the areas and the inclinations of these planes are different. 
Therefore, for a complete description of stress, we have to specify not only 
its magnitude, direction and sense but also the surface on which it acts. For 
this reason, the stress is called a "Tensor".  



 
Stress components acting on parallelopiped 

Figure above depicts three-orthogonal co-ordinate planes representing a 

parallelopiped on which are nine components of stress. Of these three are 

direct stresses and six are shear stresses. In tensor notation, these can be 

expressed by the tensor tij, where i = x, y, z and j = x, y, z. 

In matrix notation, it is often written as  

   



SPHERICAL AND DEVIATORIAL STRESS TENSORS 

A general stress-tensor can be conveniently divided into two parts as 

shown above. Let us now define a new stress term (σm) as the mean 

stress, so that 

𝜎𝑚 =
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3
 

Imagine a hydrostatic type of stress having all the normal stresses equal to 

σm, and all the shear stresses are zero. We can divide the stress tensor 

into two parts, one having only the "hydrostatic stress" and the other, 

"deviatorial stress". The hydrostatic type of stress is given by 

 

                               

 

 

Here the hydrostatic type of stress is known as "spherical stress tensor" 

and the other is known as the "deviatorial stress tensor". 

 

It will be seen later that the deviatorial part produces changes in shape of 

the body and finally causes failure. The spherical part is rather harmless, 

produces only uniform volume changes without any change of shape, and 

does not necessarily cause failure. 

 

 



TYPES OF STRESS 

Stresses may be classified in two ways, i.e., according to the type of body 

on which they act, or the nature of the stress itself. Thus stresses could be 

one-dimensional, two-dimensional or three-dimensional as shown in the 

Figure (a), (b) and (c). 

 

 

 
(a) One-dimensional Stress 

 

 

 

 

(b) Two-dimensional Stress                                          (c) Three-dimensional Stress 

Types of Stress 

TWO-DIMENSIONAL STRESS AT A POINT 

A two-dimensional state-of-stress exists when the stresses and body forces are 

independent of one of the co-ordinates. Such a state is described by stresses σx , σy  

and τxy  and the X and Y body forces (Here z is taken as the independent co-

ordinate axis). 



We shall now determine the equations for transformation of the stress components 

σx , σy  and τxy  at any point of a body represented by infinitesimal element as shown 

in the Figure 

 
 

Thin body subjected to stresses in xy plane 

 

 
Stress components acting on faces of a small wedge cut from body of Figure shown 

above. 



Consider an infinitesimal wedge as shown in Fig. cut from the loaded body 

in Figure above It is required to determine the stresses σx’ ,  and τx’y’, that 

refer to axes to axis x and y  making an angle θ with axes X, Y as shown in 

the Figure. Let side MN is normal to the x’ axis. 

Considering σx’ ,  and τx’y’ as positive and area of side MN as unity, the sides 

MP and PN have areas cosθ and sinθ, respectively. 

Equilibrium of the forces in the x and y directions requires that  

Tx = σx’ cosθ+ τx’y’ sinθ 

Ty = τx’y’ cosθ + σx’ sinθ 

 

 
Substituting the stress resultant the above equations become 

 

 

 

 
 



Principal stress in two dimensions: 

 

is applied to equation of yielding 

 

 
These are the principal directions along which the principal or maximum 

and minimum normal stress act. 

 

A principal plane is thus a plane on which the shear stress is zero. The 

principal stresses are determined by the equation 

 

 
Analysis of three dimensional stresses and strains  

 Consider a cube of infinitesimal dimensions shown in figure; all stresses acting on 

this cube are identified on the diagram. The subscripts (τ) are the shear stress, 

associate the stress with a plane perpendicular to a given axis, the second designate 

the direction of the stress, i.e. 

 



 

 
 

Strain-displacement relations: 
When the strain components 𝜖𝑥, 𝜖𝑦 and 𝛾𝑥𝑦 at a point are known, the unit 

elongation or displacement for any direction and the decrease of a right 

angle (the shearing strain) of the any orientationat the point can be found. 

A line PQ as shown in figure below between the points (x,y) , (x+dx, y+dy) 

is translated, stretched (contracted) and rotated into the line element P’Q’ 



when the deformation occurs. The displacement component of P are  u,v 

those of Q are 

 
 

 
 



 



 

  

Equilibrium equations  

 

  

 

 
 

 

Consider the equilibrium of a small 

rectangular block of edges h,k and 

unity as shown in the figure. 

The stresses acting on the faces 

1,2,3,4 and their positive directions 

are indicated in the figure. On 

account of the deviation of stress 



 
Boundary Conditions: Equations (18) or (19) must be satisfied 

 

 



 
 

Compatibility conditions: The problem of the theory of elas- 

 

 



 



 
 



Airy’s stress function: It has been shown that a solution of two 

dimensional problems reduces to the integration of the differential 

equations of equilibrium together with the compatibility equation and the 

boundary conditions. If we begin with the case when the weight of the body 

is the only body force, the equations to be satisfied are   

 

To these equations the boundary conditions (20) should be added. Thus 
usual method of solving these equations is by introducing a new function, 
called stress function. This function was introduced in the solution of two 
dimensional problems by G. B. Airy so it is also called as Airy stress 
function. 

As is easily checked, the equations (a) are satisfied by taking any function ᶲ 
of x and y and putting the following expressions for the stress components.  

 

In this manner we can get a variety of solutions of the equations of 
equilibrium (a). The true solution of the problem is that which satisfies also 
the compatibility equation (b). Substituting the above expressions for the 
stress components into equation (b),  we find that the stress function ᶲ must 
satisfy the equation   

 

Thus the solution of a two-dimensional problem, when the weight of the 
body is the only body force, reduces to finding a solution of above equation, 
which satisfies the boundary conditions of the problem. 

 Let  us now consider a more general case of body forces and assume 
that these forces have a potential. Then the components X and Y in 
Equation 18 are given by equations 

 



 

 

In which ᶲ is the stress function. Substituting above expressions in the 
compatibility equation for plane stress distribution we find 

 

When the body force is simply the weight the potential V is –ρgh. In this 
case the right hand side of above equation reduced to zero. By taking the 
solution ᶲ=0 the stree distribution can found out as 

 

As a possible state of stress due to gravity. This is a state of hydrostatic 
pressure ρgh in two dimensions, with zero stress at Y=0. It can exist in a 
plate or cylinder of any shape provided the corresponding boundary force 
are applied. 

 

 

 

 

 

 

 

 

 

 

 

 



Module-II 

Plane stress: If a thin plate is loaded by forces applied at the boundary, 
parallel to the plane of the plate and distributed uniformly over the 
thickness, the stress components 𝜎𝑥  , 𝜏𝑥𝑧 , 𝜏𝑦𝑧 are zero on both faces of the 

plate and it may be assumed tentatively, that they are zero also within the 
plate. The state of stress is then specified by 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 only and is called 

Plane stress.  

 
It may be assumed that these three components are independent of z i.e. 
they don’t vary through thickness. They are functions of x and y only. 

Plane strain: A similar simplification is possible at the other extreme     

when the dimension of the body is in the z-direction is very large.  

 

 



 

 

 



 

 

 

Simple problems in cartesian and polar co-ordinates  

Solution by polynomials: it has been shown that the solution

 



 



 

 



 

 



 

ST. VENANT’S PRINCIPLE 

For the purpose of analysing the statics or dynamics of a body, one force 

system may be replaced by an equivalent force system whose force and 

moment resultants are identical. Such force resultants, while equivalent 

need not cause an identical distribution of strain, owing to difference in the 

arrangement of forces. St. Venant’s principle permits the use of an 

equivalent loading for the calculation of stress and strain. 

 

St. Venant’s principle states that if a certain system of forces acting on a 

portion of the surface of a body is replaced by a different system of forces 

acting on the same portion of the body, then the effects of the two different 

systems at locations sufficiently far distant from the region of application of 

forces, are essentially the same, provided that the two systems of forces 

are statically equivalent (i.e., the same resultant force and the same 

resultant moment). St. Venant principle is very convenient and useful in 

obtaining solutions to many engineering problems in elasticity. The 

principle helps to the great extent in prescribing the boundary conditions 

very precisely when it is very difficult to do so.  

 

 



Determination of Displacement: when the components of  

 

 



unchanged. 

 

Two Dimensional Problems in Polar Coordinate System 
In any elasticity problem the proper choice of the co-ordinate system is 

extremely important since this choice establishes the complexity of the 

mathematical expressions employed to satisfy the field equations and the 

boundary conditions. In order to solve two dimensional elasticity problems 

by employing a polar co-ordinate reference frame, the equations of 

equilibrium, the definition of Airy’s Stress function, and one of the stress 

equations of compatibility must be established in terms of Polar Co-

ordinates. 
STRAIN-DISPLACEMENT RELATIONS 
Case 1: For Two Dimensional State of Stress 
 

 
Deformed element in two dimensions 

Consider the deformation of the infinitesimal element ABCD, denoting r and 
q displacements by u and v respectively. The general deformation 
experienced by an element may be regarded as composed of (1) a change 
in the length of the sides, and (2) rotation of the sides  as shown in the 
figure above. 



Referring to the figure, it is observed that a displacement "u" of side AB 
results in both radial and tangential strain. 

 

 

 



Case 2: For three dimensional stress state 

 

 

 



Compatibility Equation: 

We have from strain displacement relation 

 



Stress-Strain Relations: 

 

 

 

 

 

 

 

 

 

 

 

 



Airy’s Stress function: 

 

 

 

 

 

 

 

 

 



AXISYMMETRIC PROBLEMS 

Many engineering problems involve solids of revolution subjected to axially 

symmetric loading. The examples are a circular cylinder loaded by uniform 

internal or external pressure or other axially symmetric loading, and a semi-

infinite half space loaded by a circular area, for example a circular footing 

on a soil mass. It is convenient to express these problems in terms of the 

cylindrical co-ordinates. Because of symmetry, the stress components are 

independent of the angular (q) co-ordinate; hence, all derivatives with 

respect to q vanish and the components 𝑣, 𝛾𝑟𝜃 , 𝛾𝜃𝑧, 𝜏𝑟𝜃 𝑎𝑛𝑑 𝜏𝜃𝑧 are zero. 

The non-zero stress components are𝜎𝑟 , 𝜎𝜃 , , 𝜎𝑧 𝑎𝑛𝑑 𝜏𝑟𝑧. 

 



 
Axisymmetric problems 

 

 

Thick walled cylinder subjected to internal and external pressure: 

Consider a cylinder of inner radius ‘a’ and outer radius ‘b’ as shown in figure below.  

 



Case (a) Plane Stress 

 

 

 

 

 



 

 

 

 

 
Substituting the values from earlier equations 

 



 

 

 
Figure below shows the variation of radial and circumferential stresses across the 
thickness of cylinder subjected to internal pressure  

 
Cylinder subjected to internal pressure 

The circumferential stress is greater at the inner surface of the cylinder and is given by 

 



 

 
Cylinder subjected to external pressure 

 

Case (b): Plane Strain 

 



 



 
It is observed that the values of 𝜎𝑟 𝑎𝑛𝑑 𝜎𝜃 are identical to those in plane stress case. But 
in plane stress case, 𝜎𝑧 =0, where as in plane strain case 𝜎𝑧 has a constant value given 
by above equation. 

Rotating Discs of Uniform thickness: 

The equation of equilibrium given by 
𝜕𝜎𝑟

𝜕𝑟
+ (

𝜎𝑟−𝜎𝜃

𝑟
) + 𝐹𝑟 = 0         (a) 

 
is used to treat the case of a rotating disk, provided that the centrifugal 
"inertia force" is included as a body force. It is assumed that the stresses 



induced by rotation are distributed symmetrically about the axis of rotation 
and also independent of disk thickness.Thus, application of equation (a), 
with the body force per unit volume Fr equated to the centrifugal force 

𝜌𝜔2𝑟, yields 
𝜕𝜎𝑟

𝜕𝑟
+ (

𝜎𝑟 − 𝜎𝜃

𝑟
) + 𝜌𝜔2𝑟 = 0 

Where 𝜌 is the mass density and 𝜔 is the constant angular speed of the 
disk in rad/sec. the above equation can be written as 

 

 
 



 

Solid Disk 

 

Circular Disk with a hole: 

 



 
Stress concentration 
 

While discussing the case of simple tension and compression, it has been 

assumed that the bar has a prismatical form. Then for centrally applied 

forces, the stress at some distance from the ends is uniformly distributed 

over the cross-section. Abrupt changes in cross-section give rise to great 

irregularities in stress distribution. These irregularities are of particular 

importance in the design of machine parts subjected to variable external 

forces and to reversal of stresses. If there exists in the structural or 

machine element a discontinuity that interrupts the stress path, the stress 

at that discontinuity may be considerably greater than the nominal stress 

on the section; thus there is a “Stress Concentration” at the discontinuity. 

The ratio of the maximum stress to the nominal stress on the section is 

known as the 'Stress Concentration Factor'. Thus, the expression for the 

maximum normal stress in a centrically loaded member becomes 

 
where A is either gross or net area (area at the reduced section), K = stress 

concentration factor and P is the applied load on the member. In Figures 

6.8 (a), 6.8(b) and 6.8(c), the type of discontinuity is shown and in Figures 



6.8(d), 6.8(e) and 6.8(f) the approximate distribution of normal stress on a 

transverse plane is shown. 

Stress concentration is a matter, which is frequently overlooked by 

designers. The high stress concentration found at the edge of a hole is of 

great practical importance. As an example, holes in ships decks may be 

mentioned. When the hull of a ship is bent, tension or compression is 

produced in the decks and there is a high stress concentration at the holes. 

Under the cycles of stress produced by waves, fatigue of the metal at the 

overstressed portions may result finally in fatigue cracks. 

 

 

 



Bending of beams and plates: 

               Bending of a cantilever Beam: Consider a canti-

 

 

 



 

 



 

 



 

 



 

 



 

Bending of beam by uniform loading: Let a beam of narrow 

 

 



 

 



 



 



 

 



Kirkhhof and Mindlin concept 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Module-III. 

Torsion of Prismatic Bars (St.Venant’s approach) 

From the study of elementary strength of materials, two important 

expressions related to the torsion of circular bars were developed. They are 

 

 

The following are the assumptions associated with the elementary 

approach in deriving above equations. 

1. The material is homogeneous and obeys Hooke’s Law.  

2. All plane sections perpendicular to the longitudinal axis remain plane 

following the application of a torque, i.e., points in a given cross-sectional 

plane remain in that plane after twisting.  

3. Subsequent to twisting, cross-sections are undistorted in their individual 

planes, i.e., the shearing strain varies linearly with the distance from the 

central axis.  

4. Angle of twist per unit length is constant.  

In most cases, the members that transmit torque, such as propeller shaft 

and torque tubes of power equipment, are circular or turbular in cross-

section.  

But in some cases, slender members with other than circular cross-

sections are used. These are shown in the Figure 7.0. 



 
Non-Circular Sections Subjected to Torque 

While treating non-circular prismatic bars, initially plane cross-sections 

[Figure (a)] experience out-of-plane deformation or "Warping" [Figure (b)] 

and therefore assumptions 2. and 3. are no longer appropriate. 

Consequently, a different analytical approach is employed, using theory of 

elasticity. 

Genera Solution of the Torsion Problem: 
The correct solution of the problem of torsion of bars by couples applied at 

the ends was given by Saint-Venant. He used the semi-inverse method. In 

the beginning, he made certain assumptions for the deformation of the 

twisted bar and showed that these assumptions could satisfy the equations 

of equilibrium given by 

 



Also from the uniqueness of solutions of the elasticity equations, it follows 

that the torques on the ends are applied as shear stress in exactly the 

manner required by the solution itself.  

Now, consider a prismatic bar of constant arbitrary cross-section subjected 

to equal and opposite twisting moments applied at the ends, as shown in 

the Figure below. 

 
Bars subjected to torsion 

 



 



  

  

   



Therefore the stress in a bar of arbitrary section may be determined by solving above 

Equations along with the given boundary conditions. 

Boundary Conditions:  

  
which means that the resultant shearing stress at the boundary is directed along the 

tangent to the boundary, as shown in the Figure below. 

 
Cross-section of the bar & Boundary conditions 

 



The above equation becomes 

 

 

Thus each problem of torsion is reduced to the problem of finding a function y satisfying 

equation and the boundary condition given above. 

Stress function method: (Prandtl approach)  

As in the case of beams, the torsion problem formulated above is commonly solved by 

introducing a single stress function. This procedure has the advantage of leading to 

simpler boundary conditions as compared to Equation given above. The method is 

proposed by Prandtl. In this method, the principal unknowns are the stress components 

rather than the displacement components as in the previous approach. 

  

With this stress function, (called Prandtl torsion stress function), the third 

condition is also satisfied. The assumed stress components, if they are to 

be proper elasticity solutions, have to satisfy the compatibility conditions. 

We can substitute these directly into the stress equations of compatibility. 

Alternately, we can determine the strains corresponding to the assumed 

stresses and then apply the strain compatibility conditions. 

Therefore from above Equations , we have 

 



 

 

The boundary condition  becomes, introducing above Equation.  

 
This shows that the stress function f must be constant along the boundary of the cross 

section. In the case of singly connected sections, example, for solid bars, this constant 

can be arbitrarily chosen. Since the stress components depend only on the differentials 

of ᶲ, for a simply connected region, no loss of generality is involved in assuming ᶲ = 0 on 

S. However, for a multi-connected region, example shaft having holes, certain additional 

conditions of compatibility are imposed. Thus the determination of stress distribution 

over a cross-section of a twisted bar is used in finding the function f that satisfies above 

Equation and is zero at the boundary. 

Conditions at the Ends of the Twisted bar 

On the two end faces, the resultants in x and y directions should vanish, and the 

moment about A should be equal to the applied torque Mt. The resultant in the x-

direction is 

 



 
Thus the resultant of the forces distributed over the ends of the bar is zero, and these 

forces represent a couple the magnitude of which is 

 
Hence, we observe that each of the integrals in Equation contributing one half of the 

torque due to txz and the other half due to tyz. Thus all the differential equations and 

boundary conditions are satisfied if the stress function ᶲ obeys above Equations and the 

solution obtained in this manner is the exact solution of the torsion problem. 

Torsion of thin walled open and closed sections 

Consider a thin-walled tube subjected to torsion. The thickness of the tube 

may not be uniform as shown in the Figure below. 

 
Torsion of thin walled sections 

Since the thickness is small and the boundaries are free, the shear 

stresses will be essentially parallel to the boundary. Let 𝜏 be the magnitude 

of shear stress and t is the thickness. 



Now, consider the equilibrium of an element of length D l as shown in 

Figure below. The areas of cut faces AB and CD are t1 D l and t2 D l 

respectively. The shear stresses (complementary shears) are t1 and t2. 

 
Determination of Torque due to shear and Rotation: 

 
Cross section of a thin-walled tube and torque due to shear 

Consider the torque of the shear  about point O 

 

Where A is the area enclosed by the centre line of the tube  



To determine the twist of the tube 

  

 

 

 

 



Torsion of thin walled multiple cell closed section 

 

Torsion of thin-walled multiple cell closed section 



 

 



 

 

Thermal stress.  

The simplest case of Thermal stress distribution: 

  

 



 

 



 

 



 

 



 

 



 

 



 

Module-IV 

Theoretical concepts of plasticity  

The classical theory of plasticity grew out of the study of metals in the 

late nineteenth century. It is concerned with materials which initially deform 

elastically, but which deform plastically upon reaching a yield stress. In 

metals and other crystalline materials the occurrence of plastic 

deformations at the micro-scale level is due to the motion of dislocations 

and the migration of grain boundaries on the micro-level. In sands and 

other granular materials plastic flow is due both to the irreversible 

rearrangement of individual particles and to the irreversible crushing of 

individual particles. Similarly, compression of bone to high stress levels will 

lead to particle crushing. The deformation of microvoids and the 

development of micro-cracks is also an important cause of plastic 

deformations in materials such as rocks.  

A good part of the discussion in what follows is concerned with the 

plasticity of metals; this is the ‘simplest’ type of plasticity and it serves as a 

good background and introduction to the modelling of plasticity in other 

material-types. There are two broad groups of metal plasticity problem 

which are of interest to the engineer and analyst. The first involves 

relatively small plastic strains, often of the same order as the elastic strains 

which occur. Analysis of problems involving small plastic strains allows one 

to design structures optimally, so that they will not fail when in service, but 

at the same time are not stronger than they really need to be. In this sense, 

plasticity is seen as a material failure1.  

The second type of problem involves very large strains and deformations, 

so large that the elastic strains can be disregarded. These problems occur 

in the analysis of metals manufacturing and forming processes, which can 

involve extrusion, drawing, forging, rolling and so on. In these latter-type 

problems, a simplified model known as perfect plasticity is usually 

employed (see below), and use is made of special limit theorems which 

hold for such models.  

Plastic deformations are normally rate independent, that is, the stresses 

induced are independent of the rate of deformation (or rate of loading). This 

is in marked contrast to classical Newtonian fluids for example, where the 



stress levels are governed by the rate of deformation through the viscosity 

of the fluid.  

Materials commonly known as “plastics” are not plastic in the sense 

described here. They, like other polymeric materials, exhibit viscoelastic 

behaviour where, as the name suggests, the material response has both 

elastic and viscous components. Due to their viscosity, their response is, 

unlike the plastic materials, rate-dependent. Further, although the 

viscoelastic materials can suffer irrecoverable deformation, they do not 

have any critical yield or threshold stress, which is the characteristic 

property of plastic behaviour. When a material undergoes plastic 

deformations, i.e. irrecoverable and at a critical yield stress, and these 

effects are rate dependent, the material is referred to as being viscoplastic.  

 

Plasticity theory began with Tresca in 1864, when he undertook an 

experimental program into the extrusion of metals and published his 

famous yield criterion discussed later on. Further advances with yield 

criteria and plastic flow rules were made in the years which followed by 

Saint-Venant, Levy, Von Mises, Hencky and Prandtl. The 1940s saw the 

advent of the classical theory; Prager, Hill, Drucker and Koiter amongst 

others brought together many fundamental aspects of the theory into a 

single framework. The arrival of powerful computers in the 1980s and 

1990s provided the impetus to develop the theory further, giving it a more 

rigorous foundation based on thermodynamics principles, and brought with 

it the need to consider many numerical and computational aspects to the 

plasticity problem. 

   
Plastic and elastic deformation 

in uniaxial tension 

 Plastic deformation is a non reversible  
process where Hooke’s law is no longer 
valid. 

 One aspect of plasticity in the viewpoint 
of structural design is that it is concerned 
with predicting the maximum load, which 
can be applied to a body without causing 
excessive yielding. 

 Another aspect of plasticity is about the 
plastic forming of metals where large 
plastic required to  

 



 
Typical true stress-strain 
curves for a ductile metal. 

 
 
 
 
 
 
 
 
 

 
Engineering stress-strain and 
true stress-strain curves. 

Yield criteria  

Commencement of plastic deformation in materials is predicted by yield 
criteria. Yield criteria are also called theories of yielding. A number of yield 
criteria have been developed for ductile and brittle materials. 

Tresca yield criterion:  

It states that when the maximum shear stress within an element is equal to or greater 
than a critical value, yielding will begin. 

 True stress-strain curve for typical ductile 
materials, i.e., aluminium, show that the stress 
- strain relationship follows up the Hooke’s law 
up to the yield point, σo. 

 Beyond σo, the metal deforms plastically 
with strain-hardening. This cannot be related 
by any simple constant of proportionality. 

 If the load is released from straining up to 
point A, the total strain will immediately 
decrease from ε1 to ε2 by an amount of σ/E. 

 The strain ε1-ε2 is the recoverable elastic 
strain. Also there will be a small amount of the 
plastic strain ε2-ε3 known as anelastic 
behaviour which will disappear by 

time.(neglected in plasticity theories.) 

 The engineering stress – strain 
curve is based entirely on the 
original dimensions of the 
specimen (this cannot represent 
true deformation characteristic of 
the material). 

 The true stress – strain curve is 
based on the instantaneous 
specimen dim ensions  



 

Von Mises criterion 

According to this criterion yielding occurs when 

 
Yield loci for two yield criteria in plane stress 



Von Mises yield criterion is found to be suitable for most of the ductile 

materials used in forming operations. More often in metal forming, this 

criterion is used for the analysis. The suitability of the yield criteria has 

been experimentally verified by conducting torsion test on thin walled tube, 

as the thin walled tube ensures plane stress. However, the use of Tresca 

criterion is found to result in negligible difference between the two criteria. 

We observe that the von Mises criterion is able to predict the yielding 

independent of the sign of the stresses because this criterion has square 

terms of the shear stresses. 

Effective stress and effective strain: 

Effective stress is defined as that stress which when reaches critical value, 
yielding can commence. 

 

 



Similarly using von Mises effective stress, we have 

 
A plane strain compression forging process 

 

Plastic stress strain relationship,  

 

 

Elastic plastic problems in bending and torsion.  

 


